Development of Risk Assessment Models for Carpal Tunnel Syndrome

Heecheon You

Industrial and Manufacturing Engineering
Wichita State University

Agenda

Introduction

- ✓ Carpal Tunnel Syndrome
- ✓ Problem Statement
- ✓ Objectives
- Study Design & Materials
 - ✓ Case-Reference Design
 - ✓ Risk Exposure Assessment Method
- Model Development & Validation
- Conclusions

Carpal Tunnel Syndrome

Peripheral neuropathy due to localized compression to the median nerve within the carpal tunnel at the wrist.

Limitations of Previous CTS Research

Incomprehensiveness: Included a partial set of CTS risk factors.

- ⇒ Insufficient understanding of the relative contributions of risk factors to the development of CTS
- Differences in research protocol
- Qualitative findings

Limitations of Previous CTS Research (cont'd)

- Differences in research protocol
 - Case definition criteria
 - Risk exposure assessment methods
 - ⇒ Difficult to compare and integrate various study results.
- Qualitative findings
 - ✓ Females, heavy individuals ⇒ more susceptible to CTS
 - ✓ Awkward postures, excessive grip forces,
 repetitive motions ⇒ increasing the risk of CTS
 - ⇒ Need quantitative models explaining the relationship between risk exposure and CTS development.

Objectives

- Examine relative contributions of risk factors to the development of CTS by contrasting the risk exposures of case group with those of reference group.
- Develop quantitative risk assessment models for CTS.
 - ⇒ Estimate the likelihood of developing CTS for an individual exposed to certain occupational risks.

Study Design

Case-reference design

	Group	Size	Remarks
	Work-related CTS patients (W-CTS)	22	Symptomatic CTS patientsClassification based on the
Case	Non-work related CTS patients (NW-CTS)	25	type of medical insurance (W-CTS: workers' comp.; NW-CTS: others)
Reference	Healthy workers (HEALTHY)	50	 No CTS symptom history

- ✓ Work experience on the current job > 1 year
 - Exclude cases due to pre-existing CTS conditions.
 - Obtain more valid occupational risk exposure assessment.

Hypothetical Features of Study Groups

Causation Matrix

Cause	Personal suscepti- bility	Occupa- tional exposure
W-CTS	•	
NW-CTS		

Risk Exposure Assessment

- Used a CTS risk assessment questionnaire developed by You (1999).
 - Time: 1 to 1.5 hr/participant
 - Retrospective assessment of risk exposures
 - ✓ Contents

Risk Facto Category	r # factors	Instruments adapted
Personal	29	Edinburgh handedness inventory, Bortner scale
Psychosocia	l 7	Kasl & Amick's questionnaire
Physical	9	Dynamometers

Physical Risk Assessment (example)

1. Daily Hours of Work: 8 hours/day

2. Daily Hand-Wrist Use

		Right hand						
	Almos Never	•	sionally	,	Frequently	the time	always	
	(< 1%)	(1-10%)	(11-20%)	(20-40%)	(40-60%)	(60-80%)	(> 80%)	
No use of the hands		☑ 2	□ 3	☑ 4	\square 5	□ 6	\Box 7	
Use of the hands		□ 2	□ 3	□ 4	□ 5	□ 6	1 7	

Risk exposure level

= f {duration,
frequency, severity}

3. Wrist Flexion/Extension

		Right hand					
	Almost	Rarely	Occa-	Often	Frequently	Most of	Almost
	never (< 1%)	(1-10%)	sion ally (11-20%)	(20-40%	(40-60%)	the time (60-80%)	always (> 80%)
Use of the hands	1	2	□ 3	□ 4	5	□ 6	2 7
Natural (within 5 degrees)		2	□ 3	☑ 4	5	□ 6	□ 7
Moderate (5 to 30 degrees)		\square 2	□ 3	☑ 4	5	□ 6	□ 7
Extreme (above 30 degrees)		2	☑ 3	□ 4	5	□ 6	0 7

Risk Scale & Reliability

- Defined 106 risk exposure scales.
 - (e.g.) smoking
 - (1) smoking status (never/ex-smoker/current smoker)
 - (2) smoking experience (no/yes)
 - (3) smoking history during last 5 years (no/yes)
 - (4) current status of smoking (no/yes)
 - (5) years of smoking (never smoked/1-10/11-20/>20)
 - (6) years of smoking (years)
 - (7) smoking level (never smoked/1-10/11-20/>20 cigarettes/day)
- Screened 98 reliable risk scales.
 - ✓ Test-retest (>1 week apart) for 20 participants
 - ✓ correlation ≥ .7

Model Development Procedure

No	Phases	Technique		
1	Variable screening	 Pseudo-univariate logistic regression 		
2	Risk prediction model development	Multiple logistic regression		
3	Model adequacy checking	 Hosmer-Lemeshow test 		
4	Classification model development	• ROC analysis		
5	Model cross-validation	 Jack-knife technique 		

Pseudo-Univariate Logistic Regression

- Conducted multiple logistic regression for each risk scale including age, gender, and age×gender (common confounders for CTS risk).
- Screened risk scales if:
 - ✓ OR (odds ratio) agrees with previous findings
 - ✓ P < .25 (Afifi and Clark, 1990)</p>

			NW-CTS / HEALTHY										
Risk Scale		Frequency			Adjusted for age and gender			χ^2 test					
		Ca	ases	Ref	erents	Odds Ratio	Р	95% CI	χ^2	d.f.	Р		
Repetitive use of the hands ar	d wrists	for r	ecreation	onal a	ctivity								
Minimal (<1 hr/week)		6	24%	20	40%								
Low (1-3 hrs/week)		7	28%	8	16%	3.87	0.076	0.87 - 17.32	4.30	3	0.231		
Moderate (3-5 hrs/week)		5	20%	14	28%	2.21	0.320	0.46 - 10.50					
Heavy (>5 hrs/week)		7	28%	8	16%	3.91	0.084	0.83 - 18.41					

Increased CTS risk

Multiple Logistic Regression

Conducted multiple logistic regression with the screened risk scales.

	NW-CTS / HEALTHY							
Risk Scales	Coefficient (β)	Standard Error (SE(β))	Wald (<i>W</i>)	d.f.	Р	Partial Correlation (R) relative		
Age (AGE)						contribution		
Gender (GENDER)								
Hard Driving and Competitiveness (HD)			5.91	2	0.05	0.14		
Low (<= 3.7)								
Moderate (3.8 to 4.7)	1.29	0.814	2.52	1	0.11	0.07		
High (> 4.7)	1.97	0.818	5.81	1	0.02	0.20		
Weight (WT)								
Wrist ratio - right hand (WR_R)	0.23	0.090	6.80	1	0.01	0.22		
Female by WT	0.01	0.0041	6.40	1	0.01	0.21		
AGE by WR_R	0.0012	0.0005	5.55	1	0.02	0.19		
Constant	-23.46	6.974	11.32	1	<.01			

(risk scales whose R>.1 are bolded)

Risk prediction:
$$p = \frac{1}{1 + e^{-(\alpha + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p)}}$$

CTS Risk Assessment Models

	Mul	tiple Logistic Regression M	odels
Risk Factors	W-CTS/	NW-CTS/	C-CTS/
	HEALTHY	HEALTHY	HEALTHY
Personal	1. gender (GENDER)	1. age (AGE)	1. age (AGE)
Factors	2. wrist ratio of the	2. gender (GENDER)	2. gender (GENDER)
	right hand (WK•R)	3. behavioral pattern-	3. light of use of the
	3. musculoskeletal	hard driving and	hands/wrists for
	disorder history	competitiveness (HD)	recreational activity
	daring last 5 years	4. weight (WT)	(LU) [†]
	at the hands/wrists	5. wrist ratio of the	4. weight (WT)
	(MD_5_D)	right hand (WR_R)	5. wrist ratio of the
			right hand (WR_R)
			6. musculoskeletal
			disorder history
			during last 5 years at
			the hands/wrists
			(MD_5_D)
Psychosocial	-	-	-
Factors			
Physical	1. use of heavy power		1. use of heavy pinch
Factors	grip forces (>20 lbs.)		grip forces (>5 lbs.) of
	of the dominant hand	-	the dominant hand
	(PW_20_D)		(PC_5_D)
	2. use of heavy pinch		2. very highly repetitive
	grip forces (>5 lbs.)		motions (<1
	of the dominant		sec./operation) of the
	hand (PC_5_D)		dominant hands
	3. very highly		(RE_1_D)
	repetitive motions (<1 sec/operation)		3. exposure of the hands/wrists to
	of the dominant		
	hands (RE_1_D)		extremely cold temperature (<50
	nanus (RE_1_D)		deg. F) (CO_E)
			ueg. r) (CO_E)

Causation Matrix

Cause	Personal suscepti- bility	Occupa- tional exposure
W-CTS	•	
NW-CTS		

Classification Model

Determined the cut-off probability (p_c) for each model which maximizes both sensitivity (Pr(case/case)) and specificity (Pr(referent/referent)) in an equal manner.

Model	P_{c}	Sensitivity [P(case/case]	Specificity [P(referent/referent)]	Overall accuracy	ď
W-CTS/ HEALTHY	.35	91%	88%	89%	2.5
NW-CTS/ HEALTHY	.37	84%	82%	83%	1.9
C-CTS/ HEALTHY	.50	87%	88%	88%	2.3

Model Cross-Validation

	Overall	Overall accuracy					
Model	Original Cross- validation (by Jack-knife method)		Difference				
W-CTS/ HEALTHY	89%	84%	-5%				
NW-CTS/ HEALTHY	83%	76%	-7%				
C-CTS/ HEALTHY	88%	86%	-2%				

Conclusions

- Three multiple logistic models for CTS risk assessment were developed by a holistic approach.
- The risk assessment models showed a satisfactory discriminability and high classification accuracy.
- The assessment models indicates the significant variation in relative contribution of CTS risk factors depending on the work-relatedness of the nerve injury.
- Future work is needed to improve the CTS risk assessment models with more elaborated study group definitions and risk exposure assessment methods.

Q & A

