

Analysis of Grip Posture for Ergonomic Smartphone Interface Design

Younggeun Choi¹, Hayoung Jung¹, Jangwoon Park², Heecheon You¹

¹Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, South Korea ²School of Engineering and Computing Sciences, Texas A&M University – Corpus Christi, Corpus Christi, Texas, USA

Contents

- Introduction
 - Background
 - Research Objectives
- Methods
 - Measurement of Grip Postures
 - Classification of Grip Postures
- Results
 - Dominant Grip Postures by Device Size
 - Dominant Grip Postures by Hand Size
- Discussion

Importance of Ergonomic Smartphone Interface

- □ Understanding user-preferred grip postures in one-handed operation of hard keys on smartphones is needed.
 - Operational efficiency of the hard keys can be improved if they are properly located based on user-preferred grip postures
 - Improperly designed locations of the hard keys may lead to significant discomfort in the fingers (Finneran and O'Sullivan, 2013; Wobbrock et al., 2008)
 - One-handed hard key operations which require smartphone grasping and hard key operations simultaneously can cause more discomfort than two-handed hard key operations

Various Grip Postures for Different User Interfaces

☐ Wobbrock et al. (2008) analyzed **operation efficiency** of user interfaces on a PDA consisting of **touchscreens** at the front and back and **hard keys** on the side.

	Thumb-on-front	Thumb-on-back	Index-on-front	Index-on-back
Two-handed				
One-handed				

⇒ No research has been reported regarding analysis of user-preferred grip postures to determine the proper locations of hard keys on smartphones.

Research Objectives

Analysis of preferred grip posture for ergonomic smartphone interface design

- 1. Identification of user-preferred grip postures in one-handed hard key operation
- 2. Measurement and analysis of grip postures and use frequencies
- 3. Analysis of effects by smartphone size and hand size on grip posture

Participants

- **□ 45 smartphone users** (male: 28; female: 17) with **right hand** grip for one-handed operation
- □ 9 groups with 3 hand length and 3 hand width categories for each gender

Smartphone Mock-ups

□ 9 smartphone mock-ups with different sizes (3.0" ~ 7.0" screen sizes) and weights (100 ~ 190 g)

Technology Lab

Major Tasks & Specific Actions

■ Major tasks such as answering a call, listening to music, texting, and browsing the web were defined with specific actions

on/off

Tasks	Specific actions		
Answering a call	 Grasp the phone Answer a call by flicking the screen Turn volume up/down by <i>volume key</i> 		
Listening to music	 Turn volume up/down by <i>volume key</i> Scroll up/down Show menus Select a menu Turn volume up/down by <i>volume key</i> 		
Texting	 Turn screen on by <i>power key</i> Navigate screens Select a message app Send a message Return home 		
Browsing the web	 Turn screen on by <i>power key</i> Turn Wi-Fi on/off Select a web browser app Browse the internet Turn screen off by <i>power key</i> 		

Measurement of Grip Postures

□ Videotaped by 2 web cameras (LifeCam Studio, Microsoft Co. Ltd., USA) placed above and below the hand while participant performed the tasks in standing

2 cameras
recording
participants hand
from above and
below the hand

Demo: Hard Key Operation Tasks

Tasks	Specific actions		
Answering a call	Grasp the phone Answer a call by flicking the screen Turn volume up/down by volume key		
Listening to music	Turn volume up/down by volume key Scroll up/down Show menus Select a menu Turn volume up/down by volume key		
Texting	Turn screen on/off by power key Navigate screens Select a message app Send a message Return home		
Browsing the web	Turn screen on/off by <i>power key</i> Turn Wi-Fi on/off Select a web browser app Browse the internet Turn screen on/off by <i>power key</i>		

Classification of Grip Postures

□ Encoded by indicating locations of the fingers on the mock-up and the number of fingers at corresponding location

Location	Left	Right	Тор	Bottom	Front	Rear
	(L)	(R)	(Т)	(B)	(F)	(K)
# of fingers	3	1	0	0	0	1

L3-R1-K1

Grip Postures for Hard Key Use

- ☐ 9 grip postures were identified for operating the power key and volume key
- □ L3-R1-K1 (70.0%), L4-R1 (13.3%), and L3-R1-T1 (12.0%) were found dominant with 95% of use frequency.

Dominant Grip Postures

Holding from the **left and right side** of a smartphone while supporting the **back** with the index finger

Holding from the **left and right side** of a smartphone

Holding from the top, left, and right side of a smartphone

Dominant Grip Postures by Device Size

☐ The use frequency distribution of grip posture varied significantly by

smartphone size ($\chi^2(12) = 674.8$, p < 0.001)

Dominant Grip Postures by Hand Size

The use frequency distribution of **grip posture varied** significantly by **hand width** and **hand length with a similar pattern** ($\chi^2(4) = 75.3$, p < 0.001 for hand width and $\chi^2(4) = 75.3$, p < 0.001 for hand length)

Discussion (1/5)

- □ Analyzed preferred grip postures in one-handed operations of smartphone hard keys
- ☐ L3-R1-K1 posture was the most preferred
 - c for efficiency in operation of hard keys and stability in grip

Holding from the **left and right side** of a smartphone while supporting the **back** with the index finger

Holding from the **left and right side** of a smartphone

Holding from the **top**, **left**, **and right side** of a smartphone

Ergonomic Design

Technology Lab

Discussion (2/5)

- ☐ Dominant grip postures changed by device size
 - > 3.0" ~ 4.0": L3-R1-K1, L4-R1, and L3-R1-T1
 - > 4.5" ~ 5.5": L3-R1-K1 and L4-R1
 - > 6.0" ~ 7.0": L3-R1-K1
 - ⇒ users tend to move their index finger for secure grip and support.

Discussion (3/5)

- ☐ Dominant grip postures changed by hand size
 - ➤ Hand width small → large: L4-R1, 12.9% and L3-R1-K1, 13.1%
 - ➤ Hand length small → large: L4-R1, 16.3% and L3-R1-K1, 13.2%
 - ⇒ Users usually **grasp a smartphone along a diagonal direction of their hand** with a straight wrist posture while keeping the smartphone display vertical

Discussion (4/5)

- □ Need to be verified for users with more diverse hand sizes than those of the present study and consider more use contexts other than standing
- ⇒ Users having **smaller and larger hand sizes** needs to be considered
- ⇒ Sitting and walking contexts can be considered

Discussion (5/5)

- ☐ The identified dominant grip postures can be used for **determination of proper**locations of hard keys on a smartphone
 - The proper locations of hard keys can be designed by investigating the preferred hard key control area determined by the dominant grip postures of various hand sizes
 - An ergonomic evaluation of the performance of the designed hard key locations can be performed in terms of time efficiency, accuracy, and comfort.

Thank you

for your attention

