

Development of Statistical Models for Predicting a Driver's Hip and Eye Locations

Ergonomic Design

chnology Lab

Seunghoon Lee¹, Jangwoon Park², Kihyo Jung³, Xiaopeng Yang¹, Heecheon You¹

¹Department of Industrial and Management Engineering, POSTECH, Pohang, South Korea ²Department of Engineering, Texas A&M University–Corpus Christi, Corpus Christi, TX, USA ³Department of Industrial Engineering, University of Ulsan, Ulsan, South Korea

Global Contributor to Eco-Techno-Humanopia

Contents

Introduction

- Background
- Objectives of the Study

Methods

- Measurement of Hip and Eye Locations
- Development of Hip and Eye Prediction Models

Results

- HP & EP Prediction Models
- Model Performance Validation
- Discussion

Driver's Hip & Eye Locations (HL & EL)

- □ HL & EL of a driver are important design reference points to provide good reach, visibility, comfort, and clearance for the driver (SAE J1100, 2005)
 - ✓ HL: design for neutral position and adjustment range of a seat for reach

Statistical HL Prediction Models

		SAE J1517 (2011)	Reed et al. (2002)	Park et al. (2016)	
Figure		Pedal reference point (PRP)	L6 L27 Ball of foot (BOF)	+Z center eye" (x, z) right knee joint (x, z) right knee joint (x, z) right knee joint (x, z) right knee joint (x, z) HLLZ (x, z) HLLZ (x, z) +X	
Predictio	on model	$HLx_{2.5} = 687.1 + 0.895 \times H30 - 0.0021 \times H30^{2}$ $HLx_{97.5} = 936.6 + 0.614 \times H30 - 0.0019 \times H30^{2}$	$HLx = 84.8 + 0.4659 \times S$ - 430.1 × SHS - 0.1732 × H30 + 0.4479 × L6 - 1.04 × L27	$\begin{split} HL \chi &= 9446 - (5.190 \times \text{S}) - (5.060 \times \text{BMI}) - (16970 \times \text{SHS}) \\ &- (2.750 \times \text{Age}) - (0.365 \times \text{H30}) + (0.465 \times \text{L6}_{re}) + \\ &(10.50 \times \text{S} \times \text{SHS}) + (0.109 \times \text{BMI} \times \text{Age}) \end{split} \\ HL_{\mathcal{I}} &= 276.0 - (680.0 \times \text{SHS}) + (4.540 \times \text{BMI}) - (5.550 \times \text{Age}) + \\ &(0.906 \times \text{H30}) - (5.760 \times 10^{-2} \times \text{BMI} \times \text{Age}) + \\ &(12.90 \times \text{SHS} \times \text{Age}) \end{split}$	
Predictors	Human	-	S (stature) SHS (sitting height/stature)	S, SHS, BMI, Age	
	Package Layout	H30 (seat height)	H30, L6 (SW to BOF <i>x</i>)	H30, L6	
	Seat	-	L27 (fixed cushion angle)	-	
Performance	adj. <i>R</i> ²	Not Available	0.78	HLx = 0.68 HLz = 0.95	
	RMSE (mm)	Not Available	35.9	HLx = 33.3 HLz = 17.3	
	L AND MANAGEMEN	Т	4	Ergonomic Design Technology Lab	

Statistical EL Prediction Models

Digital Human Models

- Digital human models (DHMs) of specific body sizes (e.g., 5th %ile female, 50th %ile male) were used in vehicle ergonomics and safety studies
- Recently, studies have been actively conducted on DHMs considering individual differences in body size, sitting position, and sitting strategy.
 - ⇒ Need HP & EP prediction models considering various body sizes, sitting postures, and seat configurations

Objectives of the Study

Development of Statistical Models

for Predicting a Driver's Hip and Eye Locations

- 1) Measurement of hip and eye locations of drivers in various sizes, postures, and seat configurations
- 2) Development of statistical HL & EL prediction models
 - Driving posture-based models
 - Seat configuration-based models
- 3) Evaluation and Validation of the
 - HL & EL prediction models

INDUSTRIAL AND MANAGEMENT

ENGINEERING, POSTECH

ime

Participants

- Recruited 23 participants
 - Gender: 10 females, 13 males \checkmark
 - Age: 20s ~ 50s (29.2 ± 7.3) \checkmark
 - Stature groups: small (≤ 33rd %ile), medium (33rd ~ 67th %ile), and large (≥ 67th %ile) \checkmark groups of stature by referring to 2010 Size Korea anthropometric data

	Male		Female		
	Size Korea	Experiment	Size Korea	Experiment	
М	171.4	171.1	158.4	159.7	
SD	6.1	8.4	5.6	6.6	
Min	-	152.2	-	150.4	
Max	-	183.0	-	172.8	
MD					
paired <i>t</i> -test	<i>t</i> (2459) = 2.18 <i>p</i> = 0.91		t(2016) = 2.26 p = 0.54		

 \Rightarrow Mean heights were found similar with Korean population

Apparatus

- □ Seating buck
 - ✓ EQ 900 power adjustable seat (Hyundai-Kia Motors, Republic of Korea)
 - ✓ G27 racing wheel and pedals (Logitech, Swiss)
- □ Motion analysis system Osprey (Motion Analysis Co., Santa Rosa: CA, USA)
- □ PC-based seat control system

Driving Simulation Experiment: Procedure

Duration per participant: 60 min

Driving Posture Measurement

Driving postures and seat configurations were measured while the seat changes its fore-aft seat position (± 60 mm), seat height (± 25 mm), seatback recline angle (± 5°), and seat cushion angle (± 2.5°) from the driver's preferred

Data of Sitting Posture & Seat Configuration

- The origin of the 2D coordinate system was located in the accelerator heel point (AHP) (SAE J1100, SAE, 2009)
- Driving postures and seat configurations were calculated on the sagittal plane

Prediction Models: Summary

- □ Posture based: *R*² = .85 (.68 ~ .90), *RMSE* = 19.8 (14.2 ~ 26.3) mm
- □ Seat configuration based: $R^2 = 0.81$ (.55 ~ .96), RMSE = 18.9 (16.8 ~ 21.5) mm

Category	HL & EL	Regression Equation	Adjusted R ²	<i>RMSE</i> (mm)
Posture based Models	Hip _x reBOF	$133 + \{0.316 \times FL \times \cos(\theta_{ankle})\} + \{1.01 \times LL \times \cos(\theta_{knee})\} + \{0.996 \times UL \times \cos(\theta_{hip})\}$	0.90	26.3
	Hip _z reAHP	$221 + \{0.0438 \times FL \times \sin(\theta_{ankle})\} - \{0.504 \times LL \times \sin(\theta_{knee})\} - \{0.622 \times UL \times \sin(\theta_{hip})\}$	0.68	15.6
	Eye _x reBOF	$ \begin{split} &110 + \{0.256 \times \text{FL} \times \cos{\left(\theta_{\text{ankle}}\right)}\} + \{0.981 \times \text{LL} \times \cos{\left(\theta_{\text{knee}}\right)}\} \\ &+ \{0.950 \times \text{UL} \times \cos{\left(\theta_{\text{hip}}\right)}\} + \{0.918 \times \text{TL} \times \sin{\left(\theta_{\text{trunk}}\right)}\} \\ &+ \{1.06 \times \text{NL} \times \sin{\left(\theta_{\text{neck}}\right)}\} - \{0.307 \times \text{HL} \times \cos{\left(\theta_{\text{head}}\right)}\} \end{split} $	0.91	23.0
	Eye _z reAHP	$\begin{array}{l} 245 + \{0.0843 \times \text{FL} \times \sin(\theta_{\text{ankle}})\} - \{0.481 \times \text{LL} \times \sin(\theta_{\text{knee}})\} \\ - \{0.343 \times \text{UL} \times \sin(\theta_{\text{hip}})\} + \{0.880 \times \text{TL} \times \cos(\theta_{\text{trunk}})\} \\ + \{0.924 \times \text{NL} \times \cos(\theta_{\text{neck}})\} + \{0.861 \times \text{HL} \times \sin(\theta_{\text{head}})\} \end{array}$	0.89	14.2
Seat configuration based Models	Hip _x reBOF	$-104 + \{105 \times S\} + \{1.01 \times L53\}$	0.91	17.7
	Hip _z reAHP	$-50.9 + \{8.23 \times S\} + \{0.907 \times H30\} + \{115 \times \sin(\theta_{\text{Cushion}})\}$	0.55	19.5
	Eye _x reBOF	$221 - \{87.4 \times S\} + \{1.04 \times L53\} - \{693 \times \cos(\theta_{Seatback})\}$	0.96	21.5
	Eye _z reAHP	$-646 + \{440 \times S\} + \{0.826 \times H30\} + \{588 \times sin (\theta_{Cushion})\}$	0.82	16.8

Posture-Based Models: Hip_x reBOF & Hip_z reAHP

 $\mathbf{Hip}_{x} \ \mathbf{reBOF} = 133 + \{0.316 \times \mathrm{FL} \times \cos\left(\theta_{\mathrm{ankle}}\right)\} + \{1.01 \times \mathrm{LL} \times \cos\left(\theta_{\mathrm{knee}}\right)\} + \{0.996 \times \mathrm{UL} \times \cos\left(\theta_{\mathrm{hip}}\right)\}$

Adj. $R^2 = 0.90$; RMSE = 26.3 mm

 $\mathbf{Hip}_{z} \, \mathbf{reAHP} = 221 + \{0.0438 \times \mathrm{FL} \times \sin\left(\theta_{\mathrm{ankle}}\right)\} - \{0.504 \times \mathrm{LL} \times \sin\left(\theta_{\mathrm{knee}}\right)\} - \{0.622 \times \mathrm{UL} \times \sin\left(\theta_{\mathrm{hip}}\right)\}$

Adj. $R^2 = 0.68$; RMSE = 15.6 mm

Posture-Based Models: Eye_x reBOF & Eye_z reAHP

 $Eye_{x} reBOF = 110 + \{0.256 \times FL \times \cos(\theta_{ankle})\} + \{0.981 \times LL \times \cos(\theta_{knee})\} + \{0.950 \times UL \times \cos(\theta_{hip})\} + \{0.950 \times UL \times \cos(\theta_{hip})\} + \{0.981 \times LL \times \cos(\theta_{hip})\} + \{0.950 \times UL \times \cos(\theta_{hip})\} + \{0.981 \times LL \times \cos(\theta_{hip})\} + \{0.950 \times UL \times \cos(\theta_{hip})\} + \{0.981 \times LL \times \cos(\theta_{hip})\} + \{0.950 \times UL \times \cos(\theta_{hip})\} + \{0.981 \times LL \times \cos(\theta_{hip})\} + \{0.950 \times UL \times \cos(\theta_{hip})\} + \{0.981 \times LL \times \cos(\theta_{hip})\} + \{0.$

 $\{0.918 \times \text{TL} \times \sin(\theta_{\text{trunk}})\} + \{1.06 \times \text{NL} \times \sin(\theta_{\text{neck}})\} - \{0.307 \times \text{HL} \times \cos(\theta_{\text{head}})\}$

Adj. $R^2 = 0.91$; RMSE = 23.6 mm

Seat-Based Models: Hip_x reBOF & Hip_z reAHP

 $Hip_{x} reBOF = -104 + \{105 \times S\} + \{1.01 \times L53\}$

Adj. $R^2 = 0.91$; RMSE = 17.7 mm

 $Hip_{z} reAHP = -50.9 + \{8.23 \times S\} + \{0.907 \times H30\} + \{115 \times sin (\theta_{Cushion})\}$

Adj. $R^2 = 0.55$; RMSE = 19.5 mm

Seat-Based Models: Eye_x reBOF & Eye_z reAHP

Eye_x *re***BOF** = $221 - \{87.4 \times S\} + \{1.04 \times L53\} - \{693 \times \cos(\theta_{\text{Seatback}})\}$

Adj. $R^2 = 0.96$; RMSE = 21.5 mm

Adj. $R^2 = 0.82$; RMSE = 16.8 mm

Eye_z $reAHP = -646 + \{440 \times S\} + \{0.826 \times H30\} + \{588 \times sin (\theta_{Cushion})\}$

Eve $\cos\left(\theta_{\text{Seatback}}\right)$ where: BOF = Ball of foot, AHP = Accelerator Heel Point, Eye_z reAHP S = StatureL53 = Horizontal AHP-Hip length, H30 = Vertical AHP-Hip length, $\theta_{\text{seatback}} = \text{seatback angle},$ Hip $\theta_{\text{seatpan}} = \text{cushion angle}$ H30 BOF $\sin(\theta_{\text{Cushion}})$ AHP L53 Eye_x reBOF **Ergonomic Design** 18 echnology Lab

Performance Comparison: RMSE (mm)

- □ Horizontal axis models < 1.4 ~ 2.4 × Reed et al.'s models
- □ Vertical axis models $< 1.1 \sim 1.3 \times$ Reed et al.'s models

Model Validation: Prediction Error (%)

- □ Eye prediction models have on average 1.7% prediction error
- □ Hip prediction models have on average 3.1% prediction error

Practicality of HL & EL Models

- Two groups of statistical models for prediction of a driver's HL and EL:
 (1) Posture-based model: Geometric relationships of HL and EL with link lengths and joint angles
 - (2) Seat configuration-based model: Geometric relationships of HL and EL with fore-aft seat position, seat height, seat back recline angle, and seat cushion angle
 - The seat configuration-based models are preferred to the posture-based models in terms of practicality because the posture based models require predetermined posture information to predict the driver's HL and EL
 - The posture-based models can be used to estimate the driver's HL & EL
 for an optimal driving posture specified

Accuracy of HL & EL Models

- The seat configuration- and posture-based models developed in the present study showed high accuracy in prediction of HL (RMSE = 19.8 mm) and EL (RMSE = 18.9 mm)
 - Accurate measurement of HL, EL, link length, and joint angles would contribute to the performance of prediction models
 - \leftarrow Motion capture system provides more accurate measurement of driving posture
 - $\Leftarrow \ \ \, \text{The PC-based seat control system used in this study can measure driver's natural}$
 - HL, EL, and driving posture changes according to seat configuration change

22

Application of HL & EL Models

Drivers' HL & EL prediction models can be used for

- intelligent car design which provides driver with convenience such as auto seat adjustment and side mirror control
- Iayout design of in-vehicle interface for various driving assistance systems, infotainment systems, entertainment systems, etc.
- ✓ evaluation of ergonomic simulation based on digital human model

considering various body sizes, sitting postures, and seat configurations

Future Research

- □ Validation of the prediction models in the real car condition
- Generalization of prediction models by considering various occupants package layout (e.g., coupe, SUV) conditions
 - \leftarrow Prediction models developed in this study can be applied only to sedan condition
- □ Applicability of prediction models that can be applied to extremely

small & large drivers

Q & A

