

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

2017 HFES Annual Meeting

The Effects of Visual Attention Factors on Visual Field Testing for Maintenance of Gaze Fixation

2017. 10. 13

Jihyoung Lee^{1,2}, Younggeun Choi^{1,2}, Xiaopeng Yang¹, Gunhee Oh¹, Minjae Kim¹, Hyejee Kim³, Jaheon Kang³, and Heecheon You¹

¹Department of Industrial and Management Engineering, POSTECH ²eyepia, Inc., Pohang, 37666, South Korea ³Department of Ophthalmology, Kyung Hee University Hospital at Gangdong

Global Contributor to Eco-Techno-Humanopia

Contents

Introduction

- ✓ Background: Glaucoma?
- ✓ Limitation of Existing Perimeters
- ✓ Research Objectives
- Methods
- Results
- Discussion

Glaucoma

- □ Glaucoma is a progressive ophthalmologic disease, leading a cause of blindness triggered by visual field defect that is progressed by optic nerve damage.
- \Box No obvious symptoms until the advanced stage \rightarrow "Silent sight thief"
- Causes: high ocular pressure, abnormal blood circulation, high myopia, old age, family history

Patients of Glaucoma in the World

 Quigley and Broman (2006) reported that the prevalence of glaucoma may increase to almost 80 million by 2020 globally.

Exams for Glaucoma

- □ Structural test: Measure the morphological characteristics in the eye
- □ Functional test: Measure the functionality of the retina
- \Rightarrow Of the tests, only the visual field test requires psychophysical responses to stimuli

for a significant period of testing time (5~10 min./eye)

Visual Field Testing

Detect the locations of damaged optic nerves in the central vision by checking stimuli presented at various locations are recognized while the gaze remains at the central target (Dersu and Wiggins, 2006)

Target location in central visual field

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

Humphrey® Field Analyzer / HFA™ II-i Series, Carl Zeiss, Germany

(considered as gold standard perimetry)

Ergonomic Design

6

Importance of Gaze Fixation

If the examinee's gaze is moved from the central target, the visual field target is presented to a location on the retina different from the optic nerve location to be measured ⇒ Inaccurate visual field measurement

 \Rightarrow A proper gaze fixation induction method is needed for accurate testing

Limitation of Existing Perimeters

□ Use a LED light or simple dot as the central target

 \Rightarrow Decrease the accuracy of test results due to lack of gaze fixation induction to the

central target

Central target	Whit	Green dot							
	Easy field	AP-5000	Octopus 900						
Model									
Central target	Yello	w dot	Black dot						
	M700	HVF II- <i>i</i> series	Humphrey® Matrix™						
Model									
INDUSTRIAL AND MANA ENGINEERING, POSTEC	AGEMENT	8	Ergonomic Design Technology Lab						

Research Goal

Comparison of gaze fixation induction methods for effective gaze fixation induction in visual field testing

- Gaze fixation performance: correct fixation rate, 1-blindspot response rate, 1false positive target response rate
- ✓ **Subjective satisfaction**: ease of gaze fixation, eye fatigue, overall satisfaction
- \Rightarrow Identification of effective GFIMs

Experimental Design

□ Participants: 32 (M:F = 1:1; 20s = 30s = 16, age: 29 ± 4.4 yr)

Design: Single-factor within-subjects ANOVA

□ Homogeneity test of variance: Bartlett's test

□ Post-hoc analysis: Tukey-Kramer test, Dunnett's T3 test

Cat	egory	Items							
Independ	ent variable	Gaze fixation induction method							
Dependent	Objective Measure	 Correct fixation rate (CFR) 1-Blind spot response rate (1-BS_RR) 1-False positive target response rate (1-FPT_RR) 							
variables	Subjective Measures	 Ease of gaze fixation (EGF) Eye fatigue (EF) Overall satisfaction (OS) 							

Gaze Fixation Induction Method

Develop four new GFIMs by applying four visual attentional factors: color,

alphanumeric character, flashing, and shape (Sanders and McCormick, 1993)

Apparatus

Eye tracking system, head positioner (Arrington Research, USA), 27" monitor, desktop
 PC, handheld input button

Experimental S/W

□ Visual field testing area: visual angle $\leq 24^{\circ}$

 \Box # of targets: 236 (# of visual field testing targets = 54 × 4 = 216; # of blind spot targets = 10;

of false positive targets = 10) (note) false positive target = beep w/o visual target

Analysis Procedure on Gaze Tracking Data

Gaze Trajectory Analysis

□ Gaze trajectory (GT) is divided into B-S and S-A intervals

Determination of Correct Gaze Fixation

Correct Fixation Rate

□ The ratio of the number of targets in which the gaze is located within the visual angle < 1.0° from the central target</p>

 \Box CFR $\uparrow \Rightarrow$ Gaze fixation performance \uparrow

1-Blind Spot Response Rate (BS_RR)

■ BS_RR: ratio of # responses to 10 blind spot targets presented ■ 1-BS_RR $\uparrow \Rightarrow$ Gaze fixation performance \uparrow

$$1 - BS_R(\%) = 1 - \frac{r}{b} \times 100$$

r: the number of responses to the blindspot target presented

b: total number of the blindspot targets (10 times)

(e.g.) total number of blindspot targets is 10, 2 responses \rightarrow 1-BS_RR = 80%

1-False Positive Target Response Rate (FPT_RR)

FPT_RR: ratio of # responses to 10 false positive targets (beeps w/o visual stimuli) presented

□ 1-FPT_RR \uparrow ⇒ Gaze fixation performance \uparrow

$$1 - FPT_R(\%) = 1 - \frac{r}{p} \times 100$$

r: the number of responses to the false positive target presented

p: total number of the false positive targets (10 times)

(e.g.) total number of false positive targets is 10, 4 responses \rightarrow 1-FPT_RR = 60%

Subjective Satisfaction

□ Evaluation of the proposed GFIMs relative to BD using a 11 point-bipolar Likert

scale in terms of ease of gaze fixation, eye fatigue, and overall satisfaction.

_	Questionnaire																																
Items		Ease of gaze fixation								Eye fatigue											Overall satisfaction												
Type of GFIMs	Very unsatisf	ied				Normal				sa	Very atisfied	No fatigu	•				Normal				The f	worst fatigue	Very unsatis	fied				Normal				➡ sa	Very atisfied
BD						0											0											0					
CCD	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5
AC	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5
FBD	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5
BECH	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5	-5	-4	-3	-2	-1	0	1	2	3	4	5

Result: CFR

Mean: All the new GFIMS showed better performance, but not statistically significant, than BD

- □ Variance: FBD and BECH have significantly lower variance than BD
- \Rightarrow FBD and BECH were preferred in terms of mean and variance of CFR

Results: 1-BS_RR & 1-FPT_RR

□ BD, FBD, and BECH were preferred in terms of 1-BS_RR and 1-FPT_RR.

Results: Subjective Satisfaction

□ BECH was found most satisfactory compared to the other four methods.

⇒ The radial shape of BECH appears to most efficiently induce attention of an examinee.

Synthesis: Performance & Satisfaction

BECH and FBD are best and second best, respectively, as the performance and subjective satisfaction measures are considered.

Discussion (1/3)

- For determination of a correct gaze fixation, the trajectory of gaze before and after presentation of the visual field testing target was analyzed.
- \Rightarrow Minimize the effects of head movements in the gaze trajectory analysis

Discussion (2/3)

□ BECH and FBD were found proper GFIMs by considering the performance of gaze

fixation and subjective satisfaction

Category	BECH	FBD								
GFIM	*									
Pros.	 The radial shape induces the examinee's gaze to the central target efficiently. Lowest false response rate 	 Flashing induces the examinee's gaze to the central target involuntarily. 								
Cons.	 Increased efforts are needed to fix the examinee's gaze to the central target. 	 Cause false responses more frequently than BECH. 								

⇒ BECH is recommended for people with high attention.
FBD is recommended for those with decreased attention.

Discussion (3/3)

- The participants of the present study were those in 20s and 30s without eye diseases.
- \Rightarrow Expand the experiment with participants in various ages (20s ~ 30s; 40s ~ 50s; 60s
 - ~ 70s) and patients with glaucoma

Q & A

THANK YOU FOR YOUR ATTENTION

"This work was partly supported by the Technological innovation R&D progra m of SMBA [S2450704] and the Health & Medical Technology Development Project of ministry of health & welfare [HI14C0818]"

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

