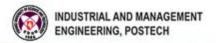


Measurement and Application of 3D Ear Scans for Earphone Design

Wonsup Lee,¹ Hayoung Jung,² Ilguen Bok,³ Chulwoo Kim,³ Ochae Kwon,³ Teukgyu Choi,⁴ and **Heecheon You**²

¹ Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands

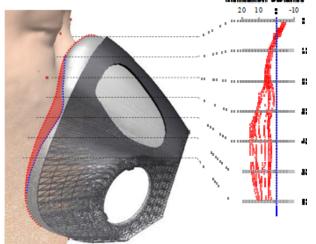

² Department of Industrial & Management Engineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea

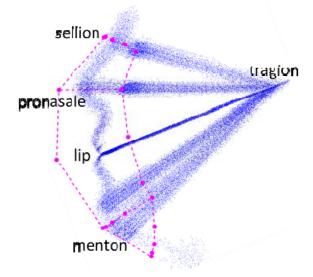
³ Design Team, Mobile Communication Division, Samsung Electronics, Seoul, South Korea

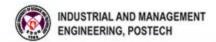
⁴ Humanopia, Co., Pohang, South Korea

Contents

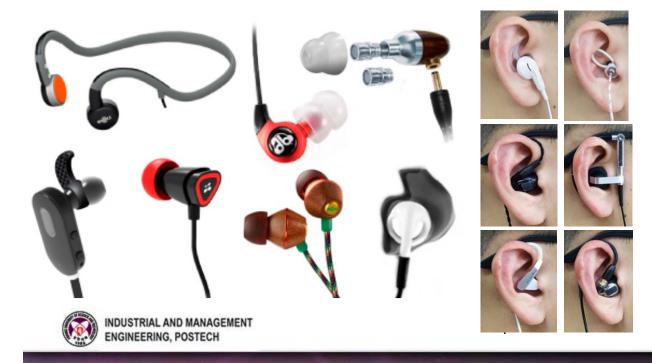
- Introduction
 - Background
 - Objectives of the Study
- Collection of 3D Ear Scans
- Anthropometric Analysis of 3D Ear Scans
- Application of 3D Ear Scans to Earphone Design
- Discussion

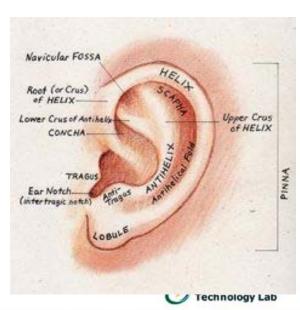

Usefulness of 3D Body Scans in Product Design


□ Provide detailed measurements of complex dimensions (e.g., curvature, area, and volume) of the human body applicable to various product designs


Application of 3D scan images to product design

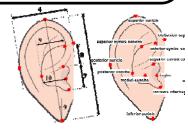
Representative head form analysis of 2,300 head images for head wearable products Virtual fit analysis for design of pilot's oxygen mask by applying 3D facial shapes of 336 Korean pilots 3D shape analysis of 300 Korean faces for design of dust-proof mask



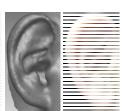


Needs of 3D Ear Anthropometry

- □ Diversity & complexity of earphone types and designs
 - ⇒ Require detailed measurements of the ear for earphone design
- ☐ Little information of 3D ear shapes is available
- ⇒ Need to identify detailed ear dimensions which is significantly related to earphone design
- ⇒ Need to collect 3D ear scans including the pinna and earhole

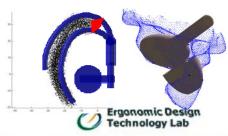


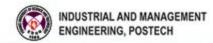
Objectives of the Study

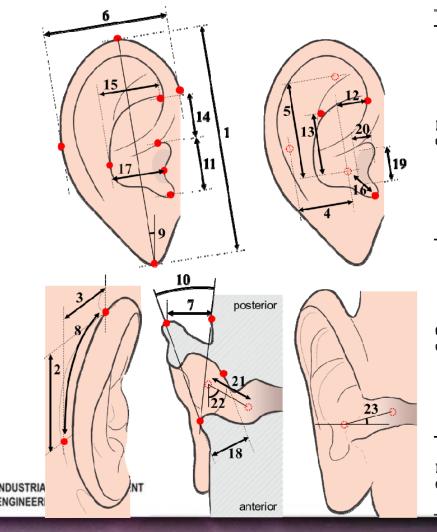

Measurement and Application of 3D Ear Scans for Earphone Design

1. Identification of ear dimensions and landmarks related to earphone

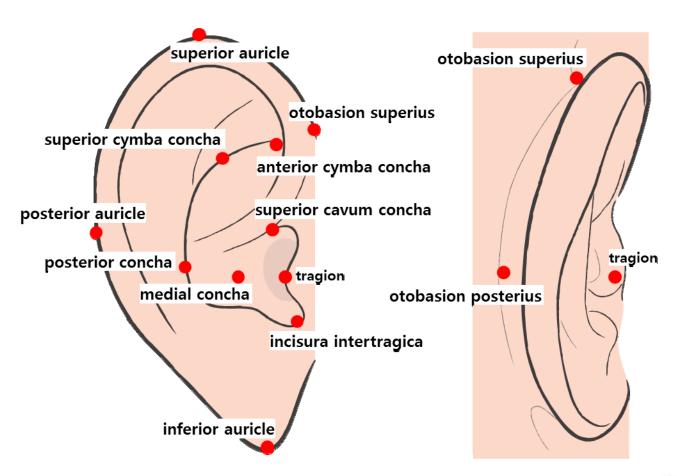
2. Collection of 3D ear scans and measurements: scanning, editing, landmarking, and measurement

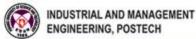

3. Analysis of the size, shape, volume of the ear




4. Application of 3D ear scans to design of earphone

Identification of Ear Dimensions


- □ Selected 9 ear dimensions out of 22 dimensions found from 22 papers
- □ Defined 14 new dimensions which are highly relevant to earphone design



Category		No	Ear dimensions
		1	ear length
Ear dimensions		2	otobasion superius to otobasion posterius horizontal length
	Length	3	otobasion superius to otobasion posterius vertical length
		4	center of concha to otobasion posterius length
		5	center of concha to otobasion superius length
	3371.461.	6	ear breadth
	Width	7	ear protrusion
	Arc	8	upper otobasion are
	Angle	9	ear angle
		10	pinna flare angle
Concha dimensions		11	cavum concha length
	Length	12	center of concha to anterior cymba concha length
		13	center of concha to superior cymba concha length
		14	superior cavum concha to anterior cymba concha length
		15	posterior concha to anterior cymba concha length
		16	center of concha to incisura intertragica length
	Width	17	cavum concha width
	Depth	18	cavum concha depth
	Length	19	ear canal length
Ear canal	Width	20	ear canal width
rar canai dimensions	Depth	21	ear canal depth
minensions	Angle	<u>22</u>	ear canal azimuth angle Regonomic Design
		23	ear canal elevation angle

Determination of Ear Landmarks

☐ Identified 18 landmarks for measurement of the 23 ear dimensions selected in the study for ear phone design

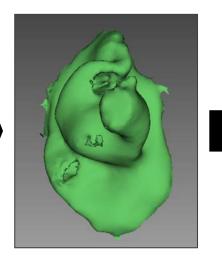


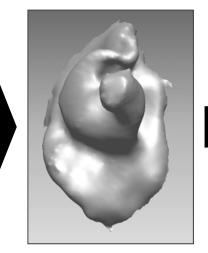
3D Scanning of the Outside Ear (Pinna)

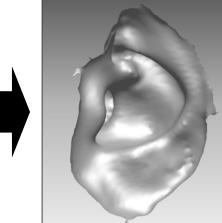
- □ Scanned the outside of the ear (pinna) using an Artec Eva 3D scanner for 296 participants in 20s to 50s
 - 200 Koreans: 100 males and 100 females
 - 96 Caucasians: 50 males and 46 females

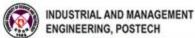
Scanning of the Concha & Earhole

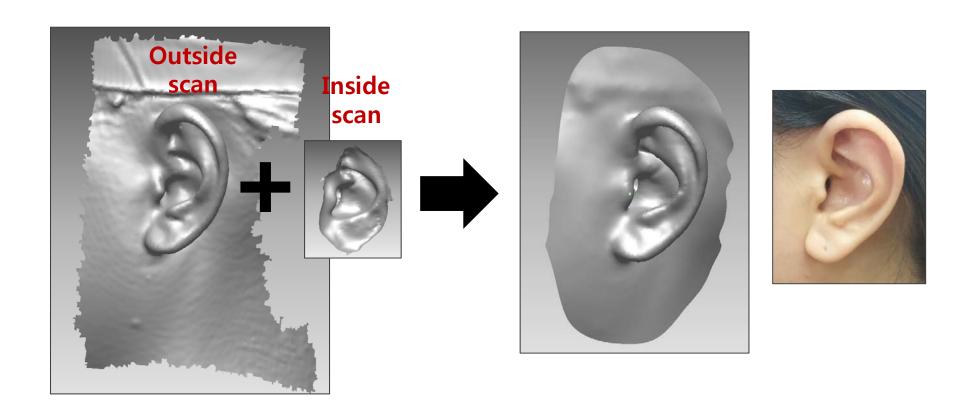
- □ Applied casting materials to obtain the shape of the concha and ear hole
- ☐ Scanned the cast using the Artec Eva 3D scanner

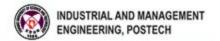






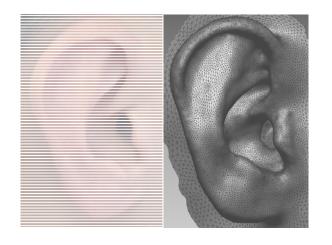


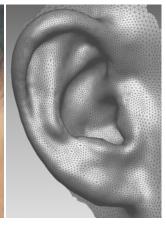


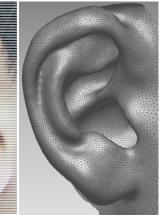


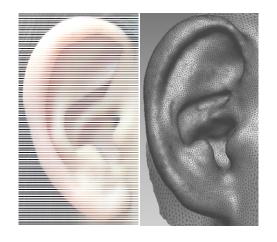
Merging Outside and Inside Ear Scans

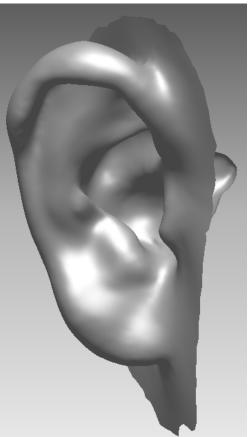
☐ Acquired an complete 3D ear scan by merging outside and inside ear scans

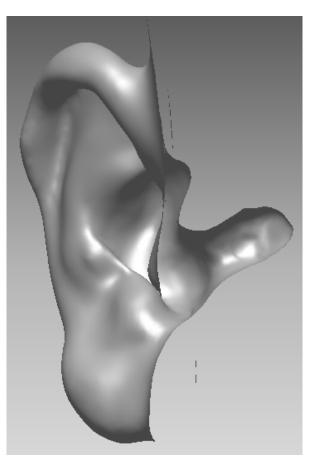


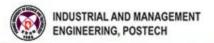

3D Ear Scans (1/2)


(n = 296)








3D Ear Scans (2/2)

☐ Acquired 3D ear scans including the ear-hole part

Measurements: Koreans (illustrated)

Category	No.	Dimensions	п	mean	SD	min	1%	5%	25%	50%	75%	95%	99%	max
	1	ear length	200	63.7	4.2	52.8	54.5	57.0	60.8	63.8	66.6	70.7	72.6	76.7
	2	ear breadth	200	31.2	2.9	22.7	24.8	26.7	29.3	31.0	33.4	35.7	37.1	39.4
	3	ear angle	200	4.9	1.6	1.0	1.0	1.9	4.4	4.9	5.7	7.6	8.3	8.7
	4	ear protrusion	200	16.5	2.8	10.6	11.2	12.3	14.3	16.5	18.2	21.5	23.8	24.9
Pinna dimensions	5	otobasion superius to otobasion posterius horizontal dist.	200	23.3	2.2	16.7	18.5	19.9	21.8	23.4	25.0	26.7	28.2	32.0
	6	otobasion superius to otobasion posterius vertical dist.	200	23.2	2.2	16.8	18.3	19.6	21.8	23.4	24.6	26.6	28.2	29.4
	7	upper otobasion arc	200	45.0	3.6	36.7	37.6	39.6	42.6	44.8	47.1	50.6	55.5	57.2
	8	center of earphone to otobasion superius dist.	200	30.5	2.5	23.4	25.5	26.5	29.0	30.4	32.1	34.7	36.7	38.8
	9	center of earphone to otobasion posterius dist.	200	27.9	1.6	23.8	24.8	25.4	26.9	27.8	28.9	30.8	32.0	32.3
	1	concha length	200	17.2	1.3	12.9	13.9	15.0	16.4	17.3	18.1	19.1	19.6	21.2
	2	earhole length	200	14.7	1.3	10.1	11.2	12.7	13.9	14.7	15.6	16.7	17.1	18.3
	3	concha width	200	16.8	1.8	11.6	12.9	14.0	15.6	16.9	17.9	19.8	20.7	21.5
	4	center of earphone to anterior cymba conchae dist.	200	4.3	0.4	3.2	3.3	3.5	4.1	4.3	4.5	5.0	5.2	5.3
Concha & earhole Dimensions	5	center of earphone to superior cymba conchae dist.	200	16.6	1.5	12.2	12.7	14.0	15.7	16.6	17.4	18.8	20.1	22.6
	6	earhole major axis length	193	12.9	2.0	7.0	7.7	9.7	11.4	13.0	14.4	15.7	16.3	17.1
	7	earhole minor axis length	193	9.2	2.4	4.7	5.7	6.5	7.7	8.4	10.2	13.4	18.5	20.0
	8	earhole depth	200	8.3	1.2	5.1	5.8	6.4	7.4	8.2	9.1	10.4	11.0	11.3
	9	earhole azimuth angle	200	24.8	8.8	4.6	6.0	9.3	18.5	24.8	31.1	38.7	45.7	53.2
	10	earhole elevation angle	200	-7.7	23.9	-70.5	-64.4	-45.6	-23.4	-8.7	11.2	29.7	43.3	49.0

Comparison of Ear Measurements: Koreans vs. Caucasians

□ Koreans ≈ Caucasians: mean difference ≤ 2 mm in most of ear dimensions (70% ~ 75%)

unit: mm |mean diff| ≤ 2.0 mm $^{\dagger} p < 0.05$ Male Female Composite: Gender Category No. Dimensions Korean Caucasian Korean Caucasian Korean Caucasian Mean diff. Mean diff Mean diff. (n = 100)(n = 50)(n = 100)(n = 46)(n = 200)(n = 96)ear length 65.5 ± 3.9 61.7 ± 3.9 3.8[†] (6%) 62.0 ± 3.8 59.3 ± 3.9 2.7[†] (4%) 63.7 ± 4.2 60.5 ± 4.1 3.2[†] (5%) ear breadth 33.9 ± 2.3 1.0[†] (3%) 29.4 ± 2.4 2.0^{\dagger} (7%) 31.2 ± 2.9 32.7 ± 2.7 1.5[†] (5%) 32.9 ± 2.2 31.4 ± 2.5 ear angle 4.0 ± 2.0 0.7^{\dagger} (16%) 5.0 ± 1.5 0.8^{\dagger} (18%) 4.9 ± 1.6 0.8^{\dagger} (18%) 4.7 ± 1.7 4.2 ± 2.3 4.1 ± 2.2 ear protrusion 1.2[†] (7%) 17.8 ± 2.5 16.6 ± 3.5 15.2 ± 2.4 15.7 ± 2.6 0.5 (3%) 16.5 ± 2.8 16.2 ± 3.1 0.3 (2%) otobasion superius to otobasion posterius horizontal 0.8[†] (3%) 24.4 ± 2.1 23.6 ± 1.8 22.3 ± 1.8 22.8 ± 1.8 0.5 (2%) 23.3 ± 2.2 23.2 ± 1.8 0.1 (0%) Pinna dist. dimensions otobasion superius to 23.6 ± 2.1 22.0 ± 2.9 1.6[†] (7%) 22.9 ± 2.2 22.2 ± 2.6 0.7 (3%) 23.2 ± 2.2 22.1 ± 2.8 1.1[†] (5%) otobasion posterius vertical dist. 2.5[†] (6%) 1.4[†] (3%) upper otobasion arc 46.3 ± 3.3 43.8 ± 3.3 43.7 ± 3.4 43.3 ± 3.6 0.4 (1%) 45.0 ± 3.6 43.6 ± 3.5 center of ear to otobasion 2.6[†] (9%) 29.9 ± 2.4 2.1[†] (7%) 31.1 ± 2.5 28.5 ± 2.7 28.3 ± 2.4 1.6[†] (6%) 30.5 ± 2.5 28.4 ± 2.5 superius dist. center of ear to otobasion 28.3 ± 1.7 28.0 ± 1.5 0.3 (1%) 27.6 ± 1.4 27.6 ± 1.4 0.0 (0%) 27.9 ± 1.6 27.8 ± 1.5 0.1 (0%) posterius dist. 17.5 ± 1.3 14.8 ± 1.3 2.7[†] (17%) 16.8 ± 1.2 14.8 ± 1.3 2.0[†] (13%) 17.2 ± 1.3 14.8 ± 1.3 2.4[†] (15%) concha length 2.2[†] (17%) earhole length 14.9 ± 1.3 12.3 ± 1.4 2.6[†] (19%) 14.4 ± 1.2 12.2 ± 1.2 14.7 ± 1.3 12.3 ± 1.3 2.4[†] (18%) 16.7 ± 1.8 concha width 17.2 ± 1.7 16.9 ± 1.9 0.3 (2%) 16.5 ± 1.7 16.5 ± 1.6 0.0 (0%) 16.8 ± 1.8 0.2 (1%) center of ear to anterior cymba 0.2^{\dagger} (5%) 4.3 ± 0.4 4.5 ± 0.5 0.2^{\dagger} (5%) 4.3 ± 0.4 0.2^{\dagger} (5%) 4.3 ± 0.4 4.5 ± 0.6 4.5 ± 0.6 conchae dist. Concha & center of ear to superior cymba 1.3[†] (8%) 0.8^{\dagger} (5%) 16.7 ± 1.5 15.4 ± 1.7 16.4 ± 1.4 16.2 ± 2.0 0.2 (1%) 16.6 ± 1.5 | 15.8 ± 1.9 earhole conchae dist. dimensions 13.0 ± 2.1 0.2 (2%) 13.0 ± 2.1 12.6 ± 2.0 12.9 ± 2.0 12.8 ± 2.1 earhole major axis length 12.8 ± 1.8 0.4 (3%) 0.1 (1%) earhole minor axis length 9.0 ± 2.2 8.5 ± 2.3 0.5 (6%) 9.3 ± 2.6 8.1 ± 1.8 1.2[†] (14%) 9.2 ± 2.4 8.3 ± 2.1 0.8[†] (10%) earhole depth 9.0 ± 1.1 0.4[†] (5%) 7.6 ± 0.9 8.0 ± 1.1 0.4^{\dagger} (5%) 8.3 ± 1.2 8.3 ± 1.1 0.0 (0%) 8.6 ± 1.0 NOUSTRIAMAND ALAMAGEMENTILE 5.6[†]₁(20%) 33.4 ± 10.7 24.8 ± 8.8 31 9 on 9 4 c **D7.1** $\frac{1}{9}$ (25%) 24.9 ± 8.3 30.5 ± 7.9 24.6 ± 9.4 8.8[†] (31%) 10 earnole elevation angle 3.7 (5%) 12.0[†] (13%) $-9.3 \pm 23.1 | -5.6 \pm 23.7$ 5.9 ± 21.1 -6.1 ± 24.7

Comparison of Ear Measurements: Male vs. Female

- □ Overall size: Male > Female (mean difference: 3.5 mm for Koreans, 2.5 mm for Caucasians)
- **□ Detailed size: Male** ≈ **Female** (mean difference ≤ 2 mm: 80% for Koreans, 100% for Caucasians)

OOF Imaan diffl < 20 mm

$^{\dagger} \rho < 0.05$ mean diff ≤ 2.0 mm unit: mm											
			Korean				Caucasian		Composite: Race		
Category N	No.	Dimensions	Male (n = 100)	Female (<i>n</i> = 100)	Mean diff.	Male (<i>n</i> = 50)	Female (<i>n</i> = 46)	Mean diff.	Male (<i>n</i> = 150)	Female (<i>n</i> = 146)	Mean diff.
	1	ear length Overall size	65.5 ± 3.9	62.0 ± 3.8	3.5 [†] (5%)	61.7 ± 3.9	59.3 ± 3.9	2.4 [†] (4%)	64.2 ± 4.3	61.1 ± 4.0	3.1 [†] (5%)
	2	ear breadth	32.9 ± 2.2	29.4 ± 2.4	3.5 [†] (11%)	33.9 ± 2.3	31.4 ± 2.5	2.5 [†] (8%)	33.3 ± 2.3	30.1 ± 2.6	3.2 [†] (10%)
	3	ear angle	4.7 ± 1.7	5.0 ± 1.5	0.3 (6%)	4.0 ± 2.0	4.2 ± 2.3	0.1 (5%)	4.5 ± 1.8	4.8 ± 1.8	0.3 (6%)
	4	ear protrusion	17.8 ± 2.5	15.2 ± 2.4	2.6 [†] (16%)	16.6 ± 3.5	15.7 ± 2.6	0.8 (6%)	17.4 ± 2.9	15.4 ± 2.5	2.0 [†] (12%)
	5	otobasion superius to otobasion posterius horizontal dist.	24.4 ± 2.1	22.3 ± 1.8	2.1 [†] (9%)	23.6 ± 1.8	22.8 ± 1.8	0.7 [†] (3%)	24.1 ± 2.0	22.5 ± 1.8	1.7 [†] (7%)
	6	otobasion superius to otobasion posterius vertical dist.	23.6 ± 2.1	22.9 ± 2.2	0.7 [†] (3%)	22.0 ± 2.9	22.2 ± 2.6	0.2 (1%)	23.1 ± 2.5	22.7 ± 2.3	0.4 (2%)
	7	upper otobasion arc	46.3 ± 3.3	43.7 ± 3.4	2.5 [†] (6%)	43.8 ± 3.3	43.3 ± 3.6	0.5 (1%)	45.5 ± 3.5	43.6 ± 3.5	1.9 [†] (4%)
	8	center of ear to otobasion superius dist.	31.1 ± 2.5	29.9 ± 2.4	1.2 (4%)	28.5 ± 2.7	28.3 ± 2.4	0.2 (1%)	30.2 ± 2.8	29.4 ± 2.5	0.8 [†] (3%)
	9	center of ear to otobasion posterius dist.	28.3 ± 1.7	27.6 ± 1.4	0.7 [†] (3%)	28.0 ± 1.5	27.6 ± 1.4	0.4 (1%)	28.2 ± 1.7	27.6 ± 1.4	0.6 [†] (2%)
	1	concha length	17.5 ± 1.3	16.8 ± 1.2	0.6 [†] (4%)	14.8 ± 1.3	14.8 ± 1.3	0.0 (0%)	16.6 ± 1.8	16.2 ± 1.6	0.4 [†] (2%)
	2	earhole length	14.9 ± 1.3	14.4 ± 1.2	0.5 [†] (3%)	12.3 ± 1.4	12.2 ± 1.2	0.2 (1%)	14.1 ± 1.8	13.7 ± 1.6	0.4 (3%)
	3	concha width	17.2 ± 1.7	16.5 ± 1.7	0.8 [†] (4%)	16.9 ± 1.9	16.5 ± 1.6	0.4 (2%)	17.1 ± 1.8	16.5 ± 1.7	0.6 [†] (4%)
Concha & earhole dimensions	4	center of ear to anterior cymba conchae dist.	4.3 ± 0.4	4.3 ± 0.4	0.0 (0%)	4.5 ± 0.5	4.5 ± 0.6	0.1 (0%)	4.4 ± 0.5	4.3 ± 0.5	0.1 (2%)
	5	center of ear to superior cymba conchae dist.	16.7 ± 1.5	16.4 ± 1.4	0.3 (2%)	15.4 ± 1.7	16.2 ± 2.0	0.8 [†] (5%)	16.3 ± 1.7	16.3 ± 1.6	0.0 (0%)
	6	earhole major axis length	12.8 ± 1.8	13.0 ± 2.1	0.2 (2%)	13.0 ± 2.1	12.6 ± 2.0	0.4 (3%)	12.9 ± 1.9	12.9 ± 2.1	0.0 (0%)
	7	earhole minor axis length	9.0 ± 2.2	9.3 ± 2.6	0.2 (3%)	8.5 ± 2.3	8.1 ± 1.8	0.4 (5%)	8.9 ± 2.2	8.9 ± 2.4	0.1 (0%)
	8	earhole depth	9.0 ± 1.1	7.6 ± 0.9	1.4 (16%)	8.6 ± 1.0	8.0 ± 1.1	0.5 [†] (7%)	8.9 ± 1.1	7.7 ± 1.0	1.1 (15%)
Nous rearhole azimuth angle			24.9 ± 8.3	24.6 ± 9.4	0.3 (1%)	30.5 ± 7.9	33.4 ± 10.7	2.9 (9%)	26.8 ± 8.6	27.4 ± 10.6	0.6 (2%)
		earhole elevation angle	-9.3 ± 23.1	-6.1 ± 24.7	3.7 (4%)	-5.6 ± 23.7	5.9 ± 21.1	11.4 (13%)	-8.0 ± 23.	2.4edh 24l2g	y La 5 .7 (7%)

Representative Ears

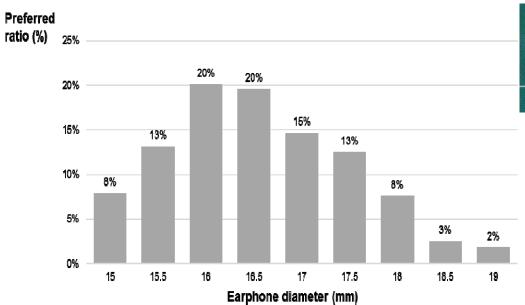
□ Determined 5 representative ears (2.5, 25, 50, 75, and 97.5%iles) by considering all the ear dimensions

Smallest (2.5%ile)

Small (25%ile)

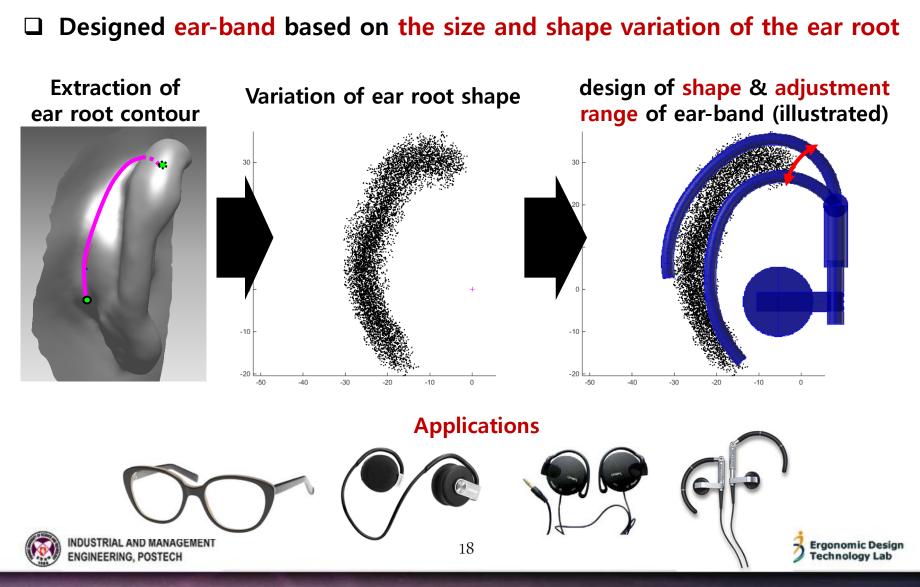
Medium (50%ile)

Large (75%ile)


Largest (97.5%ile)

Analysis of Preferred Earbud Size

- □ Fabricated earbud prototypes with different diameters (15 to 19 mm; 0.5 mm interval)
- \square Ask participants (n = 296) to select the most preferred sizes of earbud

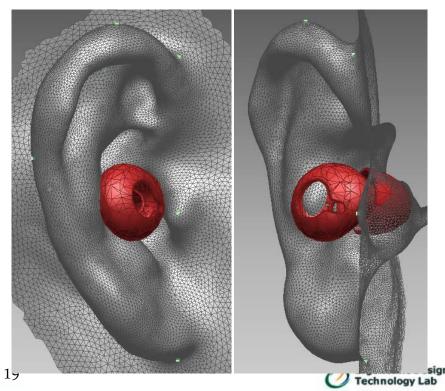

Ethnicity	Gender	Preferred size	Concha width			
	М	16.9 ± 0.9	17.2 ± 1.7			
Korean	F	16.3 ± 0.8	16.5 ± 1.7			
	Composite	16.6 ± 0.9	16.8 ± 1.8			
	М	16.5 + 1.1	16.9 + 1.9			
Caucasian	F	16.5 ± 1.1	16.5 ± 1.6			
	Composite	16.5 ± 1.1	16.7 ± 1.8			
Ra	nge	16.3 ~ 16.9 mm	16.5 ~ 17.2 mm			

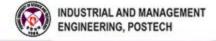
Design of Ear-Band by Ear Root Shape Analysis

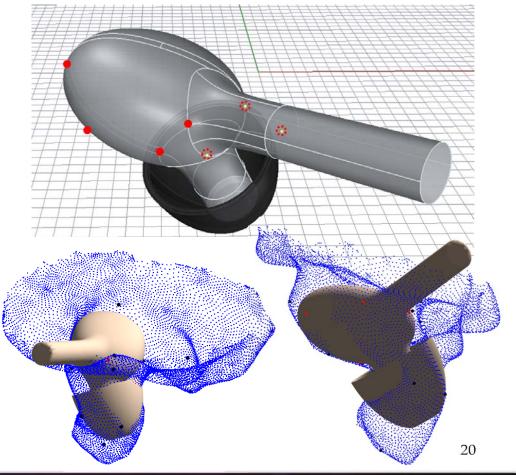
□ Extracted the contour of the ear root

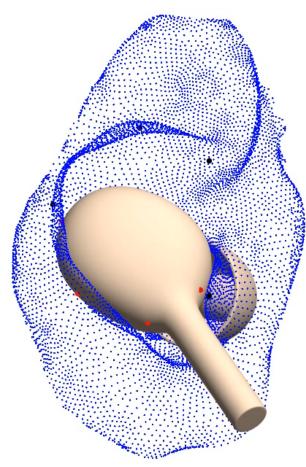
Analysis of Earphone Wearing Characteristics

- □ Scanned ears while an earphone was used to identify the use characteristics of the earphone by users
- □ Applied the use characteristics of earphone for virtual fit analysis of an earphone design

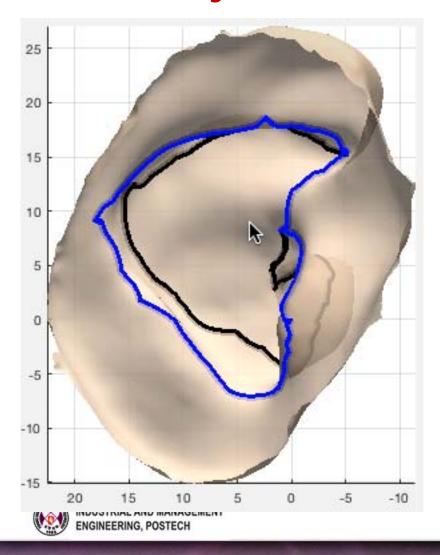

3D scan of the ear with an earphone

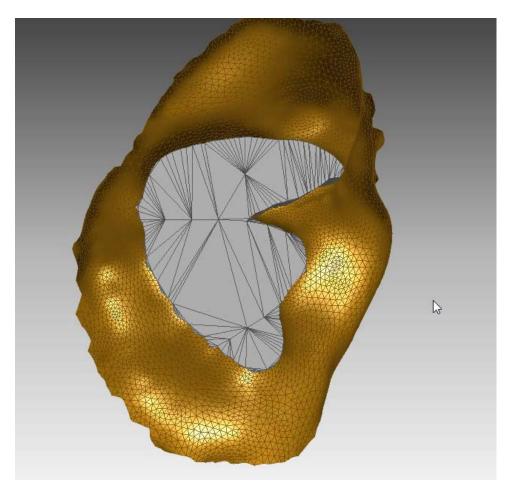



Virtual fit analysis of an earphone with a 3D ear scan



Virtual Fit Analysis


- ☐ Virtual fit simulation to find an optimal shape and size of earphone
- □ Placed an earphone based on the relationship between ear landmarks and earphone landmarks identified from the use characteristics analysis of earphone



Analysis of Contour and Volume of Concha

□ Extraction of the contour and volume of ear concha for earphone shape and size design

Discussion (1/3)

- □ Collected 3D ear scans (pinna and earhole) through a process of scanning, casting, editing, and merging
- ⇒ Applicable to design of ear wearable products (earphones, hearing-aids, headsets, glasses, goggles, and ear protector)

Discussion (2/3)

- □ Compared ear measurements between Koreans and Caucasians and those between females and males
 - ✓ Koreans ≈ Caucasians: mean difference ≤ 2 mm in most of ear dimensions (70% ~ 75%)
 - ✓ Overall size: Male > Female (mean difference: 3.5 mm for Koreans, 2.5 mm for Caucasians)
 Detailed size: Male ≈ Female (mean difference ≤ 2 mm: 80% for Koreans, 100% for Caucasians)
- □ Established 5 representative ears (2.5, 25, 50, 75, and 97.5%iles) in terms of overall ear dimensions

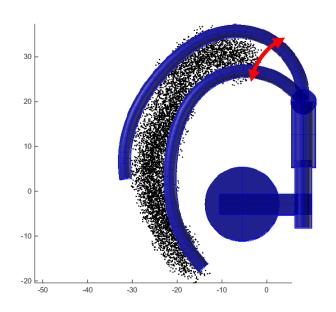
Smallest (2.5%ile)

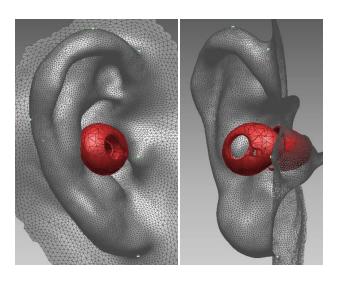
Small (25%ile)

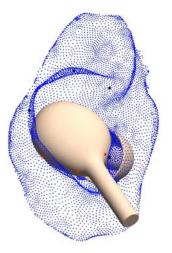
Medium (50%ile)

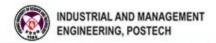
Large (75%ile)

Largest (97.5%ile)

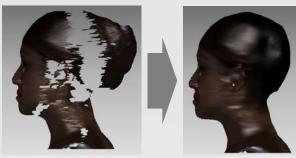


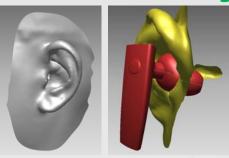





Discussion (3/3)

- □ Applied the ear scans to develop an ergonomic earphone design by:
 - 1. Analysis of preferred size of earbud by ear size (e.g., diameter of earbud)
 - 2. Analysis of shape variation of ear root for ear-band design
 - 3. Analysis of fit (e.g., shape and size of earphone, length of eartip)




Q & A

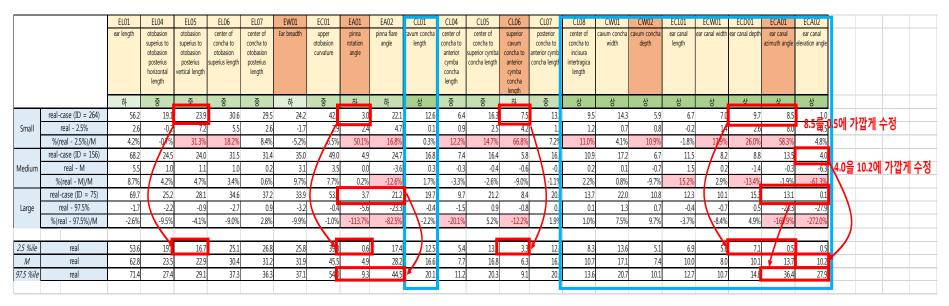
at Pohang University of Science & Technology http://edt.postech.ac.kr

Research on 3D/4D Scanning & Digital Human Modelling for Ergonomics Product Design

3D Human Body Scanning

Product Use Analysis

Representative Models



Virtual Fitting

Sizing System Development

Representative Ears

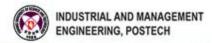
Min (2.5%ile)

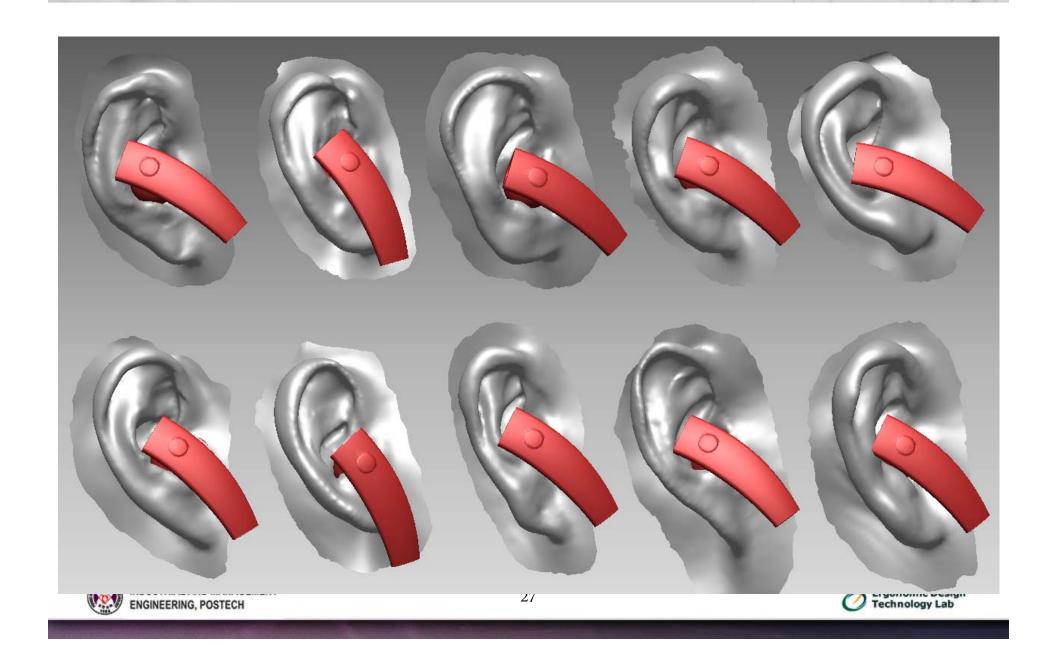
Small (25%ile)

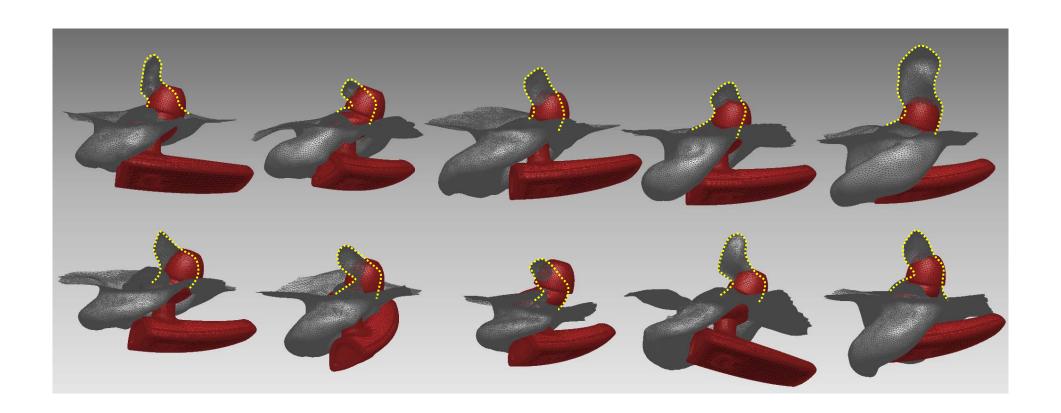
Medium (50%ile)

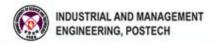
Large (75%ile)

Max (97.5%ile)









Example: Earphone Wearing Types

Example: Contact of Earphone Tip at the Earhole

