Ergonomic Design and Evaluation of a Pilot Oxygen Mask

韓國空操縱士の酸素マスクの人間工學的設計および評價

Wonsup Lee¹, Heeeun Kim², Daehan Jung³, Seikwon Park⁴, and Heecheon You¹

- ¹Department of Industrial and Management Engineering, POSTECH, Pohang, South Korea
- ²Department of Clothing and Textiles, Kyungpook National University, Daegu, South Korea
- ³Department of Systems Engineering, Korea Air Force Academy, Cheongwon, South Koreaa
- ⁴Department of Mechanical Engineering, Korea Air Force Academy, Cheongwon, South Korea

Introduction

Motivation

- Pilot OM designed based on US Air Force facial measurements
- Unfit to a significant percentage of Korean (or Asian)
 Air Force pilots
 - ⇒ Excessive pressure and/or oxygen leakage at the nasal root
 - ⇒ High level of discomfort during flight operation
- ⇒ Required a new OM design which is better fit to Korean Air Force pilots

Research Objectives

- Development and application of OM design method
- Validation of the proposed OM design

Methods

Virtual Fit Assessment (VFA)

- 3D scanning of Korean pilots' face (n = 336)
- Virtual Fit Assessment Method: automatically align OM CAD to 3D faces
- Found an optimal shape and size of OM for Korean pilots

Figure 2. Evaluation of design satisfaction by VFA

Ergonomic Evaluation

■ Participants: 83 KAF pilots (M: 81, F: 2) currently using MBU-20/P

evaluation methods	results
1. Subjective evaluation based on questionnaire	 Discomfort: 32% ~ 81% ↓ 98% pilots were satisfied with revised design
2. Pressure evaluation using pressure film	 Pressure: 11% ~ 25% ↓ Pressed area: 24% ~ 33% ↓
3. Suitability evaluation for military equipment at low atmospheric pressure, and high-G situations	 Found stable and secure in flight-like situation Subjective slippage: 86% ↓ Slippage distance examined based on video analysis: 31% ~ 83% ↓

Figure 3. Subjective Evaluation

Figure 4. Pressure Analysis

Figure 5. Suitability Evaluation for Military Equipment

Contribution

- Support more comfortable and safe flight for Air Force pilots
- Design method using 3D scan and virtual fit assess ment applicable to ergonomic product designs (e.g., other types of mask, goggles, helmets, gloves, shoes, etc.)

more information: http://edt.postech.ac.kr