Development of a Graft Weight Prediction Model Using Preoperative CT Volumetric Measurement for Living Donor Liver Transplantation Chongwoo Chu¹, Xiaopeng Yang², Jaedo Yang³, Younggeun Choi², Jeho Ryu¹, Kwangho Yang¹, Youngmok Park¹, Hee Chul Yu³, Baik Hwan Cho³, and Heecheon You²

Yangsan Hospital, Yangsan, ¹Pusan National University 626-770, South Korea

²Pohang University of Science and Technology, Pohang, 790-784, South Korea

³Chonbuk National University Medical School, Jeonju, 561-712, South Korea

Introduction

Background

• Estimation of graft weight (GW) is important to both donor and recipient for safe and successful liver surgery

- Data & Software for Regression
 40 cases (age: 29.7 ± 10.6 years) with CT images and GW measured in surgery provided by Pusan National University Yangsan Hospital (PNUYH)
 - Statistical software: Minitab version 14 (Minitab, Inc., USA)

Results

- Regression Models
 - 1. Proposed by GV_{w vein}
 - $GW = 74.7 + 0.773 \times GV_{w vein}$ (Adj. $R^2 = 0.87$)
- Existing regression models for GW estimation from preoperatively calculated graft volume with vein (GV_{w vein})

Authora	Regression Models	Adjusted	Sample		
Authors		R ²	Nationality	Size	Age
Lemke et al . (2006)	$GW = 143.704 + 0.678 \times GV_{w_vein}$	0.76	Germany	16	45.4 ±14.1
Yoneyama et al. (2011)	$GW = 0.84 \times$ GV_{w_vein}	0.52	Japan	39	N.A.

- Limitations of the existing models
 - 1. Using GV with vein to estimate GW without vein
 - 2. Small sample size (16) of Lemke et al.'s model
 - **3. Low adjusted** *R*² **value** (0.52) of Yoneyama et al.'s model
 - 4. Not validated
 - 5. Not for Korean population
- Objectives of the Study
 - 1. Develop a regression model using graft volume without vein $(GV_{w/o vein})$ for GW estimation
 - 2. Cross validate the proposed model

2. Proposed by GV_{w/o} vein $GW = 29.1 + 0.943 \times GV_{w/o vein}$ (Adj. $R^2 = 0.94$)

- Cross Validation
 - Data
 - 1. 20 cases (age: 24.1 ± 6.9 years) with CT images and GW measured in surgery provided by **PNUYH**
 - 2. 23 cases (age: 29.6 ± 10.8 years) provided by Chonbuk National University Hospital (CBNUH)
 - Comparison to Lemke et al.'s and Yoneyama et **al.'s** models and **SyngoVia** method ($GW = 0.9 \times$ GV_{w vein} manually measured by SyngoVia: Siemens Co., Germany)
 - Validation results

PNUYH Data $(n = 20)$			CBNUH Data ($n = 23$)		
Absolute Error	Percentage of	Percen-	AE		Percen-

Materials & Methods

Approach

- Preoperative GV measurement by Dr. Liver (Humanopia, Inc., South Korea)
 - 1. GV_{w vein} measurement

S1. Liver segmentation from CT and liver volume with vein (LV_{w_vein}) measurement

S2. Liver surgery planning and

Frequency distribution of PAE (left: PNUYH, right: CBNUH)

SyngoVia by GV_{w vein}

8% 10% 12% 14% 16% 18% 20% 22% 24% 26%

GV_{w vein} calculation

w vein

2. GV_{w/o vein} measurement

S1. Liver segmentation from CT and LV_{w vein} calculation

S2. Liver veins (portal and hepatic veins) segmentations from CT and their volumes calculation

S3. Exclude veins from the liver and calculate liver volume without vein $(LV_{w/o vein})$

S4. Liver surgery planning and $GV_{w/o vein}$ calculation

Discussion

- The **proposed** regression **model** by $GV_{w/o}$ vein showed superior to existing models in accuracy
- Surgeons need to spend 2~3 minutes more on GW estimation using the proposed model than existing models due to veins extraction.
- Further validation using data from more medical centers is needed.