

Surgery Planning with Dr. Liver: Advanced Features and Functions

Xiaopeng Yang¹, Younggeun Choi¹, Wonsup Lee¹, Heecheon You¹, Jihyeon Kim², Jaedo Yang², Hongpil Whang², Baojian Wang², Hee Chul Yu², and Baik Hwan Cho²

¹ Dept. of Industrial & Management Eng., POSTECH, South Korea ² Dept. of Surgery, Chonbuk National Univ. Medical School, South Korea

Global Contributor to Eco-Techno-Humanopia

Members

CHONBUK NATIONAL UNIVERSITY HOSPITAL

Baik Hwan Cho

Hee Chul Yu

Younggeun Choi

Wonsup Lee

Jihyun Kim

Baojian Wang

Contents

- Dr. Liver
- Advanced Features of Dr. Liver
- Surgery Planning with Dr. Liver
 - Demo: LDLT
 - Demo: Tumor Resection
- Future Work
- Q & A

Dr. Liver: a User-Centered Liver Surgery Planning System

Use Scenario: Overall

S1. Liver extraction S2. Vessel extraction		S3. Tumor extraction	S5. Surgery planning	
				Rem
5 min	5 ~ 10 min	5 min	5 min	5 min
S1.1. Seed point selectionS1.2. Liver extractionS1.3. Contour editingS1.4. Update & save	S2.1. Mask the liverS2.2. Seed point selectionS2.3. Vessel extractionS2.4. Contour editingS2.5. Update & save	S3.1. Seed point selectionS3.2. Tumor extractionS3.3. Contour editingS3.4. Update & save	Plane-based S4.1.1. Plane generation S4.1.2. Confirm segmentation S4.1.3. Segment management Sphere-based S4.2.1. Load the liver S4.2.2. Remove segment S4.2.3. Update & save S4.2.4. Segment management	Plane-based S5.1.1. Load files S5.1.2. Point selection S5.1.3. Plane generation S5.1.4. Volume calculation Segment-based S5.2.1. Load segments S5.2.2. Cut by segments Sphere-based S5.3.1. Load the liver
	Entire proc	essing time: 2	0 ~ 30 min	S5.3.2. Liver resection S5.3.3. Update & save
INDUSTRIAL AND MANAGEN ENGINEERING, POSTECH	IENT	5		Ergonomic Design Technology Lab

Use Scenario: Liver Extraction

< 1 min

< 2 min

• Multiple seed point selection on liver using the mouse

- . .
- Liver extraction using our hybrid method
- Liver contour
 verification

< 2 min

• Liver contour editing using a scalable editing sphere

< 1 min

- Update of the 3D liver
- Liver surface smoothing
- Liver extraction result saving

User Interface: User-Friendly Features

Advanced Features: MRI Analysis (1/3)

- Developed especially for visualization and volumetric measurement of bile duct in liver surgery planning
 - Module 1: extraction of the liver, vessels, tumor(s) and bile duct from only MRI
 - Module 2: extraction of the liver, vessels, and tumor(s) from CT, extraction of the bile duct from MRI non-rigidly registered to CT

Module 1: Analysis from Only MRI

9

3 ~ 5 min

 Liver extraction using our proposed hybrid method

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

15 ~ 20 min

 Vessel extraction using our proposed method (long editing time due to low contrast of MRI)

2 ~ 3 min

 BD extraction using the same method as vessels 1 ~ 2 min

- Resection simulation
- Volumetric measurement

Module 2: Non-Rigidly Registered CT & MRI

Advanced Features: Standard Liver Volume (SLV) Estimation

• Three regression equations used by Dr. Liver for SLV estimation

Author	Degrassion models	Adjusted R ²	Errors*				Sample		
Autior	Regression models		Mean	Median	SD	SE	Nation	Size	Age
Yu et al. (2004)	$LV = 21.585 \times BW^{0.732} \times BH^{0.225}$	0.590	-27.96	-27.78	275.4	275.8	Korea	652	42.4 ± 16.5
Urata et al. (1995)	$LV = 2.4 + 706.2 \times BSA$	0.962†	226.90	213.31	289.4	289.6	Japanese	96	11.1 ± 8.8
Heinemann et al. (1999)	$LV = -345.7 + 1072.8 \times BSA$	0.300†	-30.64	-29.88	281.5	281.7	Caucasian	1332	50.6 ± 18.9

*Differences between actual LV data and corresponding regression estimates

†Values reported by Heinemann et al. and Urata et al.

BW: body weight, BH: body height, BSA: body surface area

Advanced Features: Risk Prediction

Risk prediction equation added to Dr. Liver proposed by Yamanaka et al. (1994)

Y = -84.6 + 0.933 PHRR + 1.11 ICG R15 + 0.999 agewhere: PHRR = parenchymal hepatic resection rate ICG R15 = indocyanine green dye retention rate 15 minutes after injection of 0.5 mg/kg**Risk Prediction** Ð ANNALS OF SURGERY Vol. 219, No. 4, 342-346 @ 1994 J. B. Lippincott Company Y > 55: risky Yamanaka et al. (1994) PHRR 60.0 2 % 45 < Y < 55: borderline A Prediction Scoring System to Select Y < 45: safe ICG R15 30.0 % Cal. the Surgical Treatment of Liver Cancer 40 ۰ Age Further Refinement Based on 10 Years of Use 44.6 (Yamanaka et al.) PS = Naoki Yamanaka, M.D., Eizo Okamoto, M.D., Tsuyosi Oriyama, M.D., Jiro Fujimoto, M.D., Kazutaka Furukawa, M.D., Eisuke Kawamura, M.D., Tsuneo Tanaka, M.D., and Furnito Tornoda, M.D. PS: <= 45: safe zone From the First Department of Surgery, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Japan PS: 45 ~ 55: borderline PS:>= 55: risky zone Objective This study reports further refinement of a prediction scoring system, which was established in 1980 as a guide to determine a safe limit for hepatectomy, based on 10 years of use. PHRR: parenchymal hepatic Summary Background Data resection rate In the past, whether major resection was safe was judged empiricially from the net resection volume or the residual hepatic volume combined with the patient's liver function. However, such judgment was not based on objectively defined criteria. ICG R15: indocyanine green Methods dye retention rate 15 minutes Patients with hepatocellular carcinoma (HCC; n=376) and metastatic cancer (n=58) who had after injection of 0.5 mg/kg hepatectomy at some time from 1981 through 1990 were entered into this study. A prediction score (PS) was computed using a multiple regression equation that consists of computed tomographic scan-estimated resection rate, indocyanine green retention rate, and the patient's age. A PS greater than 55 was classified as a risky zone, a PS of 45 to 55 was considered PS: prediction score borderline. and a PS less than 45 was a safe zone. Ergonomic Design

Technology Lab

Surgery Planning for LDLT

- 1 ~ 2 min
- Data transfer from PACS
- Data cut

2 ~ 3 min

Liver extraction
 using our
 proposed hybrid
 method

2 ~ 3 min

- Vessel extraction using our proposed method
- Exclude vessels from the liver

- 1 ~ 2 min
- Resection simulation
- Volumetric
 measurement
- **Print** the liver surgery planning results

Graft Weight Estimation by Dr. Liver

 Proposed a regression model for graft weight estimation from preoperative vein free graft volume

$GW = 29.1 + 0.943 \times$	GV _{w/o vein}	(Adj. $R^2 = 0.94$)
----------------------------	------------------------	----------------------

	PNUYH Data ($n = 20$)				CBNUH Data (<i>n</i> =23)					
Methods	Absolute Error (AE; g)		Percentage of AE (PAE)		Percen- tage of	AE (g)		PAE		Percen- tage of
	Mean (SD)	SE	Mean (SD)	SE	10%	Mean (SD)	SE	Mean (SD)	SE	10%
Lemke et al. (2006) by GV _{w_vein}	36.6 (22.5)	5.0	5.8% (4.1%)	0.9%	15.0%	45.5 (32.9)	6.9	6.1% (4.1%)	0.9%	17.4%
Yoneyama et al. (2011) by GV_{w_vein}	34.2 (26.4)	5.9	5.0% (3.5%)	0.8%	10.0%	42.0 (36.8)	7.7	5.7% (4.9%)	1.0%	13.0%
SyngoVia	52.5 (49.7)	12.4	8.3% (7.1%)	1.8%	31.3%	_	_	-	-	-
Proposed by GV_{w/o_vein}	16.3 (12.6)	2.8	2.6% (2.2%)	0.5%	0.0%	21.5 (16.5)	3.4	3.0% (2.3%)	0.5%	0.0% 😋

Demo: Surgery Planning for LDLT

Surgery Planning for Tumor Resection

(1	< 1 min	2 ~ 3 min	2 ~ 3min	2 ~ 3min	1 ~ 2 min
•	Data transfer from PACS Data cut	 Liver extraction using our proposed hybrid method 	 Vessel extraction using our proposed method Exclude vessels from the liver 	• Tumor extraction using the same method as liver extraction	 Resection simulation Volumetric measurement Print the liver surgery planning results
	INDUSTRIAL AND I	MANAGEMENT	16		Ergonomic Design

Technology Lab

Demo: Surgery Planning for Tumor Resection

Future Work: Automatic Liver Reconstruction

- Currently, user interaction such as seed point selection is needed for liver extraction ⇒ Surgeons don't like it.
- Through histogram analysis of CT images, ROI can be automatically detected and used as seed for extraction of the liver, vessels, and tumors.

Abdominal CT Histogram

Future Work: Intraoperative Navigation

- Develop higher accuracy registration algorithms to synchronize preoperative surgery planning results (from Dr. Liver) with the real liver during surgery
 - Visualize vital structures such as vessels and tumors invisible during surgery
 - Support more safe and accurate liver surgery

Future Work: 3D Printing of the Liver

- Develop a module to support 3D printing of the liver, vessels, tumor(s) and surgery planning results obtained from Dr. Liver
 - Intuitive visual inspection of the liver, vasculature structures, tumor location and size, and cutting plane

Research Work Conducted by Dr. Liver

- 1) Prediction of Postoperative Liver Function After Tumor Resection by RLV/TFLV and RLV/SLV
- 2) Graft Weight Estimation

Prediction of Postoperative Liver Function After Tumor Resection by RLV/TFLV and RLV/SLV

Korean J Hepatobiliary Pancreat Surg 2013;17:143-151

Original Article

Comparison of remnant to total functional liver volume ratio and remnant to standard liver volume ratio as a predictor of postoperative liver function after liver resection

Hee Joon Kim, Choong Young Kim, Young Hoe Hur, Yang Seok Koh, Jung Chul Kim, Chol Kyoon Cho, and Hyun Jong Kim

Department of Surgery, Chonnam National University College of Medicine, Gwangju, Korea

Backgrounds/Aims: The future liver remnant (FLR) is usually calculated as a ratio of the remnant liver volume (RLV) to the total functional liver volume (RLV/TFLV). In liver transplantation, it is generally accepted that the ratio of the graft volume to standard liver volume (SLV) needs to be at least 30% to 40% to fit the hepatic metabolic demands of the recipient. The aim of this study was to compare RLV/TFLV versus RLV/SLV as a predictor of postoperative liver function and liver failure. Methods: CT volumetric measurements of RLV were obtained retrospectively in 74 patients who underwent right hemihepatectomy for a malignant tumor from January 2010 to May 2013. RLV and TFLV were obtained using CT volumetry, and SLV was calculated using Yu's formula: SLV (ml)=21.585×body weight (kg)^{0.732}×height (cm)^{0.225}. The RLV/SLV ratio was compared with the RLV/TFLV as a predictor of postoperative hepatic function. Results: Postheptectomy liver failure (PHLF), morbidity, and serum total bilirubin level at postoperative day 5 (POD 5) were increased significantly in the group with the RLV/SLV \leq 30% compared with the group with the RLV/SLV > 30% (p=0.002, p=0.004, and p<0.001, respectively). But RLV/TFLV was not correlated with PHLF and morbidity (p=1.000 and 0.798, respectively). RLV/SLV showed a stronger correlation with serum total bilirubin level than RLV/TFLV (RLV/SLV vs. RLV/TFLV, R=0.706 vs. 0.499, R²=0.499 vs. 0.239). Conclusions: RLV/SLV was more specific than RLV/TFLV in predicting the postoperative course after right hemihepatectomy. To determine the safe limit of hepatic resection, a larger-scaled prospective study is needed. (Korean J Hepatobiliary Pancreat Surg 2013;17: 143-151)

Key Words: Liver volumetry; Future liver remnant; Liver resection; Liver failure

Volumetric liver analysis using Dr. Liver

All patient underwent contrast-enhanced computed tomography (CT) as part of the routine preoperative assessment. Arterial, portal, and venous phase series of images from the preoperative CT scans were used for the CT volumetry. Volumetric analysis using Dr. Liver (Humanopia co., Ltd, Pohang, Gyungbuk, Korea) was performed by two surgeons (HJ Kim and CY Kim). The liver

