

Comparison of Force Control Capabilities (FCCs) in Patients with Motor Intentional Disorders (MIDs) and Normal Controls

2013. 6. 26

Hyunji Park¹, Baekhee Lee¹, Kihyo Jung, Ph.D.², Byunghwa Lee, Ph.D.³, Duk L. Na, MD, Ph.D.³, Heecheon You, Ph.D.¹

¹Department of Industrial and Management Engineering, POSTECH ²Department of Industrial Engineering, Ulsan University ³Department of Neurology, Samsung Medical Center

Global Contributor to Eco-Techno-Humanopia

AGENDA

Introduction

- Background
- Objective of the Study
- Research Protocol
- Results
 - 1) Effects of Age, Gender, and Hand on normal FCCs
 - 2) Comparison of FCCs bwn. MIDs & Normal Controls

Ergonomic Design Technology Lab

- 3) Diagnostic Model for MIDs
- Discussion

MIDs: Clinical Significance

- Causes of decrease in motor skills (Holvia et al., 2012; Ward et al., 2003)
 - ✓ Internal factors: age ↑, skeletal muscle mass ↓, muscle strength ↓, cognitive ability ↓
 - External factor: brain damage
- Motor intentional disorders (MIDs)
 - ✓ **Definition:** Motor disorders that disrupt volitional movements (Seo et al., 2009)
 - Etiology: Damage in the premotor region, mainly appeared in brain-damaged patients

(e.g., vascular dementia, Parkinson's disease, stroke) (Weintraub, 2008; Hong, 2010)

✓ Symptom: Force control capabilities (FCC) \downarrow → motor skills \downarrow (Seo et al., 2010)

⇒ Important to detect MIDs in the early stage because MIDs are initial symptoms of braindamaged disorders

Force Control Phases

Different types of MID by force control phase

⇒ Existing diagnostic approach: Behavioral observation & bedside test (Crucian et al., 2007)

 \Rightarrow Need to develop a quantitative system specialized for the diagnosis of MID

Existing Studies on FCC

Mainly focused on force initiation and maintenance phases

 \Rightarrow Lack of studies on development and termination phases of FCC

⇒ Need to analyze FCC according to four force control phases

Research Objective

Comparison of Motor Skills between Patients with MIDs and Normal Controls by Evaluating Finger Force Control Capabilities (FCCs)

- 1. Analysis of FCCs in normal controls by force control phase
- 2. Comparison of MID patients with normal controls
- **3. Development** of a diagnostic model for early screening of MIDs

Research Protocol

S1. System Development

- □ Finger Touch (FT) (SeedTech Co., South Korea)
 - Assessment of FCC by force control phase
 - ✓ Two finger dynamometers (load cells) (precision = 0.196 N, sampling rate = 30 ~ 32 Hz)
- **19-inch monitor** (FLATRON L1940P, LG Electronics Co., South Korea)
- Evaluation S/W

H/W (FT system & monitor)

Interface of SW

S2. Experiment: Design

Participants: 360 normal controls (30 males & 30 females from each of age strata 20s to 70s)

□ Three-factor mixed-subjects designs

- Independent variables
 - 1) Age (b-s-f): 20s ~ 70s
 - 2) Gender (b-s-f): male, female
 - 3) Hand (w-s-f): left, right → 8 trials for each hand and force control phase
- Dependent variables
 - Initiation time (IT; msec)
 - Development time (DT; msec)
 - Maintenance error (ME; mN)
 - Termination time (TT; msec)

Layout of FT system (e.g., test condition = left-hand & left-side)

S2. Experiment: Measures

S2. Experiment: Initiation Phase

- □ IT (msec): time to press the dynamometer after a visual signal
- **DT** (msec): time to reach to the target force **9.8** N
- ME (mN): average difference between the exerted and target forces
- **TT** (msec): time to release the force from the dynamometer after a visual signal

$$IT = t_j - t_i$$

where, t_i = time to present a visual signal t_j = time to press the dynamometer

S2. Experiment: Development Phase

- **IT** (msec): reaction time to press the dynamometer after a visual signal
- **DT** (msec): time to reach to the target force 9.8 N
- ME (mN): average difference between the exerted and target forces
- **TT** (msec): time to release the force from the dynamometer after a visual signal

$$DT = t_j - t_i$$

where, t_i = time to press the dynamometer

 t_i = time to reach 9.8 N

S2. Experiment: Maintenance Phase

- **IT** (msec): reaction time to press the dynamometer after a visual singal
- **DT** (msec): time to reach to the target force **9.8 N**
- □ ME (mN): average difference between the exerted and target forces
- **TT** (msec): time to release the force from the dynamometer after a visual signal

$$ME = \frac{\sum_{i=0}^{10000} |f_i - 9.8N|}{10000}$$

where, f_i = finger force at measurement i

S2. Experiment: Termination Phase

- **IT** (msec): time to press the dynamometer after a visual signal
- **DT** (msec): time to reach to the target force **9.8** N
- ME (mN): average difference between the exerted and target forces
- TT (msec): time to release the force from the dynamometer after a visual signal

$TT = t_j - t_i$

where, t_i = time to present a visual signal t_j = time to release the force from the dynamometer

S2. Experiment: Procedure

S3. Result: Effects of Age, Gender, Hand on FCCs

□ Age, gender, and hand effects on FCCs of normal controls

	Initiation time (IT)	Development time (DT)	Maintenance error (ME)	Termination time (TT)
Age (A)	< .001	< .001	< .001	< .001
Gender (G)	.009	.012	< .001	.003
Hand (H)	.803	.008	.644	.032
A × G	< .001	.314	< .001	.379
A × H	.064	.756	.227	.515
G × H	.310	.667	.705	.242
$A \times G \times H$.768	.851	.336	.568
Normalized FCC — Male Female	250 200 150 100 50 0 20~ 40~ 60s 70s 30s 50s	$ \begin{array}{c} 250\\ 200\\ 150\\ 100\\ 50\\ 0\\ 20 \sim 40 \sim 60s 70s\\ 30s 50s \end{array} $	$ \begin{array}{c} 250\\ 200\\ 150\\ 100\\ 50\\ 0\\ 20 \sim 40 \sim 60s 70s\\ 30s 50s \end{array} $	250 200 150 100 50 $20 \sim 40 \sim 60s$ 70s 30s 50s

 \times Shaded area: p < .001

 \Rightarrow All phases: Age $\uparrow \rightarrow$ FCC \downarrow

 \Rightarrow Degree of motor skill decrease: ME > IT \approx DT \approx TT

S3. Result: Speed of Normal Controls

□ Age effect: age $\uparrow \rightarrow$ IT, DT, TT \uparrow

(IT: *F*[5, 344] = 18.40, *p* < .001*; DT: *F*[5, 347] = 5.77, *p* < .001*; TT: *F*[5, 341] = 19.08, *p* < .001*)

⇒ IT, DT, and TT of age 70s: 1.2 ~ 1.3 times ↑ than those of younger adults

X MD = mean difference

2/3

17

S3. Result: Accuracy of Normal Controls

- □ Age effect: age $\uparrow \rightarrow$ ME \uparrow (*F*[5, 347] = 47.04, *p* < .001*)
- Gender effect: ME of male < ME of female (F[1, 347] = 53.03, p < .001*)
- □ A×G effect: age $\uparrow \rightarrow$ gender difference of ME \uparrow (*F*[5, 347] = 7.18, *p* < .001*)

 \Rightarrow ME of 70s: 2.1 times \uparrow than that of 20s ~ 50s

 \Rightarrow **ME of female**: 1.4 times \uparrow than that of male

S4. Comparison: Patients vs. Controls

- **Type of brain-damaged patients** (Yoon et al., 2012)
 - Amnestic MCI (aMCI)
 - Subcortical vascular MCI (svMCI)
 - Subcortical vascular dementia (SVaD)

⇒ FCCs in all phases: controls > MID patients

⇒ **Decline** in motor skills: SVaD > svMCI > aMCI (severity ↑) (severity ↓)

S4. Diagnostic Model: Method

Objective: Early screening of MID patients

Approach

- Classification method: Binary logistic regression
- ✓ Selected variables: **TT**, **ME**, **IT**, **age** (stepwise method, $\alpha_{in, out} = 0.05$)
- Data set: normal controls vs. aMCI + svMCI patients

S4. Diagnostic Model: Performance

Comparison of performance according to cut-off threshold

⇒ Maximize **sensitivity** (> 90%) for early screening of **MID**

Discussion

Assessment of FCCs: comparison of MID patients (aMCI, svMCI, SVaD) with normal controls by force control phase (initiation, development, maintenance, termination)

- ⇒ ME, TT: Discriminant factors → contribute to distinguish MID patients and controls
- Diagnostic model development for early screening of MID
 (Sensitivity for MCI = 93%, sensitivity for SVaD = 100%, specificity = 69%, accuracy = 75%)
- \Rightarrow Useful for MID diagnosis in the early stage

Q & A

Thank you for your attention!

