




Development of a Distributed Representative Human Model (DRHM) Generation and Analysis System for Multiple-Size Product Design

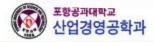






2013. 10. 3

#### Baekhee Lee<sup>1</sup>, Dr. Kihyo Jung<sup>2</sup>, and Dr. Heecheon You<sup>1</sup>


 <sup>1</sup> Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
 <sup>2</sup> School of Industrial Engineering, University of Ulsan, Ulsan, South Korea

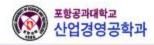
Global Contributor to Eco-Techno-Humanopia

# Agenda

#### Introduction

- Background
- Objective of the Study
- Literature Review
- System Development
- Application: Flight Suit Sizing System
- Discussion

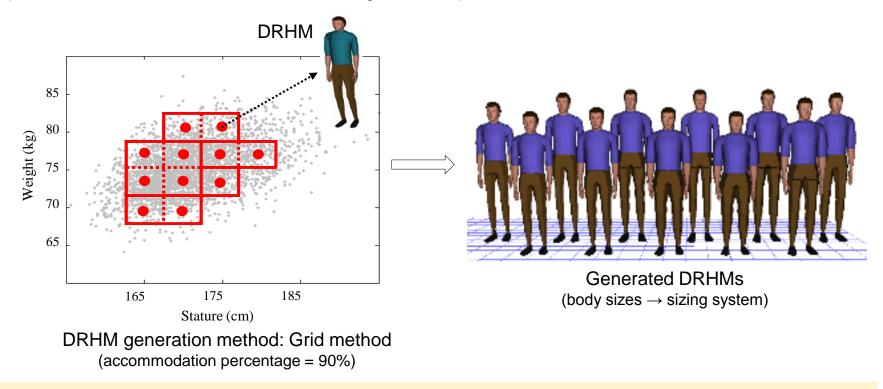




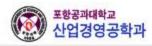

## Sizing System of Multiple-Size Product

Multiple-size product: *n* sizes to fit *n* groups of people within a designated percentage (e.g., 90%) of the population (Winks, 1997; Ashdown, 2003; Jung et al., 2010)




⇒ Sizing system of multiple-size product: Need to be properly designed to accommodate the anthropometric characteristics of a target population



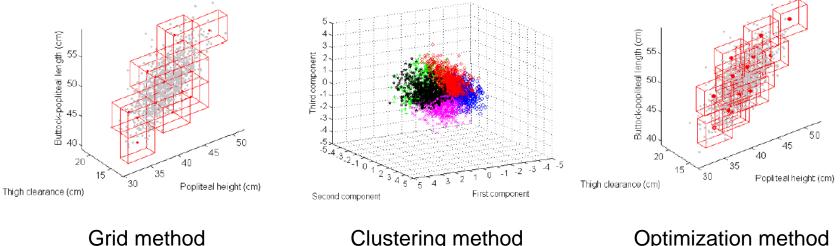



# **Distributed Representative Human Model (DRHM)**

DRHMs: Human models chosen over a set of grids which accommodate a designated percentage (e.g., 90%) of the population in the distribution of anthropometric dimensions (Robinette and Annis, 1986; Kwon et al., 2009; Jung et al., 2010)



 $\Rightarrow$  Body sizes of DRHMs: Applied for the design and evaluation of a sizing system

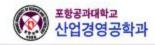





## **DRHM Generation Methods & Limitations**

DRHM generation method: Form a set of grids to accommodate a designated percentage

(e.g., 90%) of the target population (Jung et al., 2010)

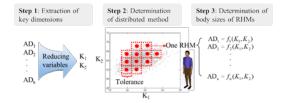


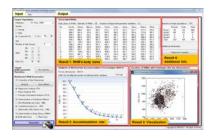

(Robinette and Annis, 1986)

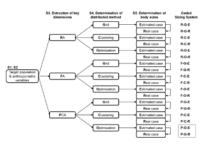
Clustering method (Laing et al., 1999) Optimization method (McCulloch et al., 1998)

Limitations: (1) unavailability of computerized systems, (2) time demand, (3) complexity

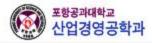
⇒ Not easy to choose an optimal sizing system out of a variety of sizing system alternatives without computerized systems



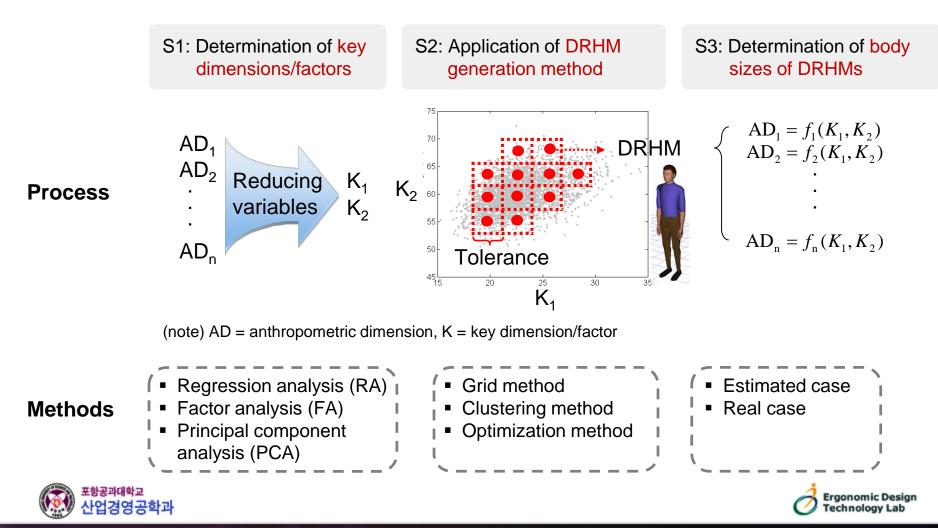


**Objectives of the Study** 

Development of a Distributed Representative Human Model (DRHM) Generation and Analysis System for Multiple-Size Product Design


- Analyze the DRHM generation process and methods
- 2. Develop a computerized system for DRHM generation and analysis
- Examine the effectiveness of the DRHM computerized system by applying to flight suit design



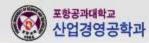


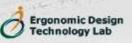






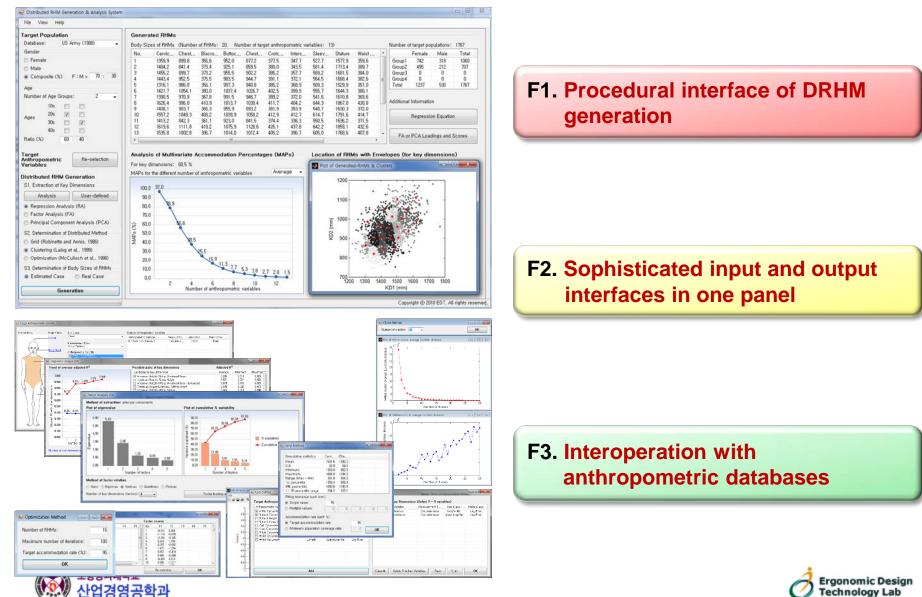

## **DRHM Generation: Process & Methods**


Jung et al. (2010): established the DRHM generation process and methods based on a comprehensive literature review




## **DRHM Generation: Methods**

| Method                                   | Grid                                                                                                                                                          | Clustering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Optimization                                                                               |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Illustration                             | Thigh clearance (cm)                                                                                                                                          | Second component<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>4<br>3<br>2<br>1<br>0<br>-1<br>-2<br>-3<br>-4<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5 | Thigh clearance (cm)                                                                       |
| Studies                                  | <ul> <li>Robinette and Annis (1986)</li> <li>Rosenblad-Wallin (1987)</li> <li>Moon (2002)</li> <li>Kwon et al. (2004)</li> <li>Zheng et al. (2007)</li> </ul> | • Laing et al. (1999)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • McCulloch et al. (1998)                                                                  |
| Formation<br>method of<br>grids/clusters | <ul> <li>Generate grids which<br/>accommodate a designate<br/>percentage of the target<br/>population</li> </ul>                                              | <ul> <li>Generate clusters using K-<br/>means cluster analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Generate grids applying the<br/>Nelder-Mead optimization<br/>algorithm</li> </ul> |
| Parameters                               | <ul> <li>Design fitting tolerance</li> <li>Accommodation percentage</li> </ul>                                                                                | • Number of clusters ( <i>K</i> )<br>referring to within- and<br>between-cluster average<br>distances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Loss score</li> <li>Accommodation percentage</li> </ul>                           |
| 호종과대학교<br>산업경영공                          | 학과                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ergonomic Design<br>Technology Lab                                                         |


# **System Development**





#### **System Features**





#### **Procedural Interface** for DRHM Generation

#### \_ 0 Distributed RHM Generation & Analysis System Input Help Target Population Generated RHMs US Army (1988) Database: DRHM generation process & methods -Gender 🔿 Female S2: Application of DRHM S1: Determination of key S3: Determination of body 💿 Male dimensions/factors generation method sizes of DRHMs Composite (%) F:M = 70 ; 30 $AD_1 = f_1(K_1, K_2)$ S1. Selection of AD<sub>1</sub> DRHM $AD_2 = f_2(K_1, K_2)$ Age AD<sub>2</sub> Reducing K target population Process variables $K_2$ Number of Age Groups: 2 • $\mathrm{AD}_{\mathrm{n}} = f_{\mathrm{n}}(K_1, K_2)$ AD, Tolerance 10s DRHM generation process 20s 1 Ages (note) AD = anthropometric dimension, K = key dimension/factor 30s V Regression analysis (RA) Grid method Estimated case 40s S2. Selection of Methods Factor analysis (FA) Clustering method Real case Optimization method Principal component Ratio (%) 60 40 anthropometric variable analysis (PCA) Analysis of Multivariate Accom Target Anthropometric Re-selection Rearession Variables analysis (RA) Distributed RHM Generation User-defined Factor S3. Determination of S1, Extraction of Key Dimensions analysis (FA) key dimensions/factors Analysis-based Analysis User-defined Principal component analysis (PCA) Regression Analysis (RA) 💿 Factor Analysis (FA) Grid Principal Component Analysis (PCA) S4. Selection of S2, Determination of Distributed Method Clustering **DRHM** generation method Orid (Robinette and Annis, 1986) Olustering (Laing et al., 1999) Optimization Optimization (McCulloch et al., 1998) S3, Determination of Body Sizes of RHMs Real Case Estimated Case Estimated case S5. Determination of **DRHMs' body sizes** Generation Real case

## **S1. Selection of Target Population**

•

30

70 :

2

#### Select an anthropometric database and form a target population

US Army (1988)

F : M =

| Target Population<br>Database: US Army (1988)<br>Gender<br>Female<br>Male<br>Composite (%) F : M = 70 : 30<br>Age | Target Population<br>Database: US<br>Gender<br>Female<br>Male |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Number of Age Groups: 2 -<br>10s                                                                                  | Ocmposite (%)                                                 |
| Ages 20s V 20s 40s 20s 40s 20s 40s 20s 40s 20s 20s 20s 20s 20s 20s 20s 20s 20s 2                                  | Age<br>Number of Age Group                                    |
| Target<br>Anthropometric<br>Variables                                                                             | 10s 📻<br>Ages <sup>20s</sup> 💌                                |
| Distributed RHM Generation                                                                                        | 30s 📃                                                         |
| S1, Extraction of Key Dimensions                                                                                  | 40s                                                           |
| Analysis User-defined                                                                                             | Ratio (%) 60                                                  |
| <ul> <li>Regression Analysis (RA)</li> <li>Faster Analysis (FA)</li> </ul>                                        |                                                               |
| <ul> <li>Factor Analysis (FA)</li> <li>Principal Component Analysis (PCA)</li> </ul>                              |                                                               |
| S2, Determination of Distributed Method<br>Grid (Robinette and Annis, 1986)<br>Clustering (Laing et al., 1999)    |                                                               |

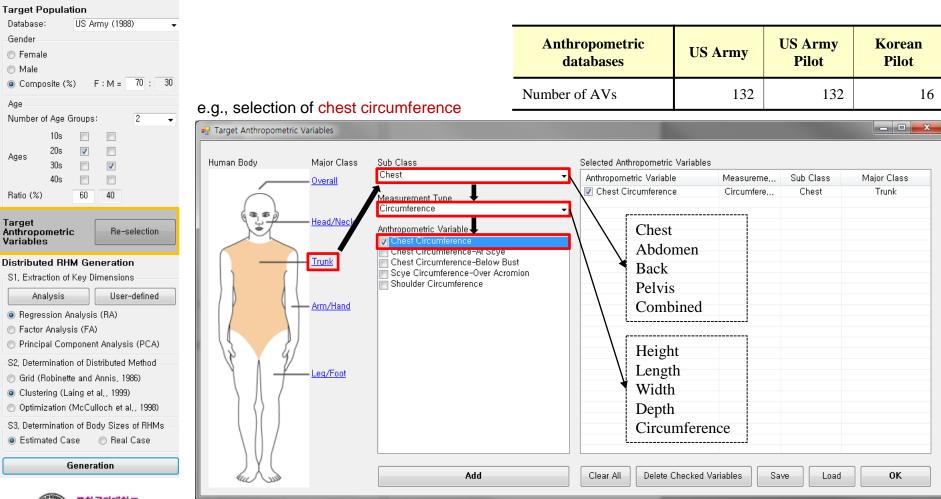
Optimization (McCulloch et al., 1998) S3, Determination of Body Sizes of RHMs

Generation

💿 Real Case

Estimated Case

Number of Age Groups: (1, 2, 3, 4)10s 20s 1 Ages 30s V 40s Ratio (%) 60 40

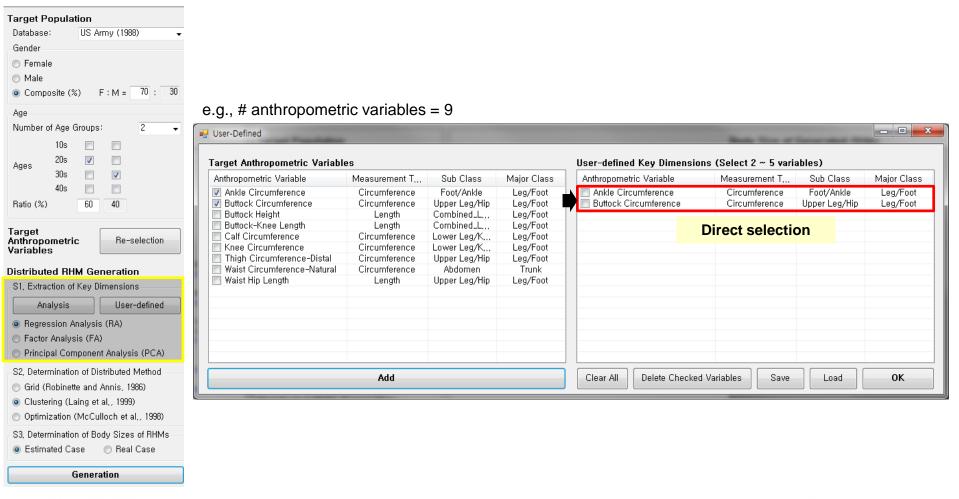

|                          | Anthropometric<br>databases |           |           |           |  |  |  |
|--------------------------|-----------------------------|-----------|-----------|-----------|--|--|--|
| Year disser              | ninated                     | 1988      | 1988      | 2007      |  |  |  |
|                          | Female                      | 2,208     | 334       | -         |  |  |  |
| Sample size ( <i>n</i> ) | Male                        | 1,774     | 487       | 1,237     |  |  |  |
| 5                        | Total                       | 3,982     | 821       | 1,237     |  |  |  |
| Range of a               | ge                          | 10s ~ 40s | 20s ~ 40s | 20s ~ 40s |  |  |  |

|        | 70%    | 30%  |       |     |
|--------|--------|------|-------|-----|
|        | Female | Male | Total |     |
| Group1 | 742    | 318  | 1060  | 60% |
| Group2 | 495    | 212  | 707   | 40% |
| Group3 | 0      | 0    | 0     |     |
| Group4 | 0      | 0    | 0     |     |
| Total  | 1237   | 530  | 1767  |     |



## **S2. Selection of Anthropometric Variable**

Provide a hierarchical interface for systematic and efficient search of anthropometric variables (You et al., 2004)



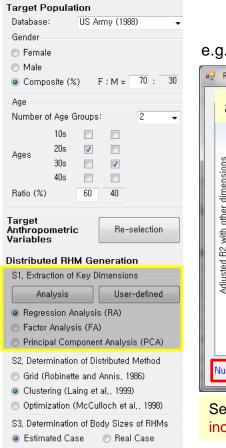


Ergonomic Design Technology Lab



## S3. Selection of Key Dimension: User-Defined

#### Determine key dimensions directly by a user's preliminary knowledge

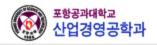







# **S3. Selection of Key Dimension: Regression Analysis**

Determine key dimensions by referring to increase in average adjusted R<sup>2</sup> by # key dimensions




#### e.g., # anthropometric variables = 7

| $\square$                                              |           | Possible pairs of key dimensions                  | highest | averade | e adi, <i>F</i> | <b>⊰</b> ² _ |
|--------------------------------------------------------|-----------|---------------------------------------------------|---------|---------|-----------------|--------------|
| average adj. R <sup>2</sup>                            |           | Candidate for key dimension                       |         |         |                 | mu           |
| 1,000 0,949                                            |           | Acromion Height-Sitting; Overhead Reach           |         | 0,876   | 0,741           | 0,973        |
| 0,900 0,876 0,883 0,921 0,949                          |           | 🔲 Overhead Reach; Sitting Height                  |         | 0,874   | 0,724           | 0,973        |
| 0,900 0,876 0,883                                      |           | 📃 🔲 Acromion Height-Sitting; Overhead Reach-Ext   | ended   | 0,873   | 0,742           | 0,973        |
| g 0,800                                                |           | 🔲 Overhead Reach-Extended; Sitting Height         |         | 0,870   | 0,724           | 0,973        |
|                                                        |           | Acromion Height-Sitting; Stature                  |         | 0,843   | 0,741           | 0,930        |
| \$ 0,700                                               |           | Sitting Height: Stature                           |         | 0,839   | 0,722           | 0,935        |
|                                                        |           | Acromion Height: Sitting Height                   |         | 0,831   | 0,732           | 0,948        |
| L 0,600                                                |           | Acromion Height: Acromion Height-Sitting          |         | 0,825   | 0, 708          | 0,926        |
| l ž . m                                                | 🔶 Maximum | 🔲 🔲 Acromion Height-Sitting; Overhead Reach Sitti | ng      | 0,770   | 0,723           | 0,817        |
| <sup>5</sup> 0,500<br>₽ 0,500                          | 🔶 Minimum | 🔲 Overhead Reach Sitting; Sitting Height          |         | 0, 765  | 0,704           | 0,816        |
| T≩ <sub>0.400</sub> : 0,393 0,390 <sub>0.377</sub> > > |           | 🔲 Overhead Reach; Stature                         |         | 0,751   | 0,421           | 0,973        |
|                                                        |           | Overhead Reach-Extended; Stature                  |         | 0,749   | 0,420           | 0,975        |
| ᠍ 0,300 -                                              |           | 🔲 🔲 Overhead Reach Sitting; Stature               |         | 0,732   | 0,402           | 0,927        |
| B 0,300<br>명 0,200                                     |           | Acromion Height: Overhead Reach Sitting           |         | 0,727   | 0,427           | 0,934        |
| 夏 0,200                                                |           | Acromion Height: Overhead Reach                   |         | 0,717   | 0,379           | 0,973        |
|                                                        |           | Acromion Height: Overhead Reach-Extended          |         | 0,716   | 0,378           | 0,975        |
| 0,100                                                  |           | Overhead Reach: Overhead Reach Sitting            |         | 0,712   | 0,391           | 0,974        |
| 0.000                                                  |           | Overhead Reach-Extended; Overhead Reach           | Sitting | 0,709   | 0,394           | 0,974        |
|                                                        |           | Acromion Height: Stature                          |         | 0,693   | 0,407           | 0,890        |
| Number of key dimensions                               |           | Overhead Beach: Overhead Beach-Extended           | III     | 0.620   | 0.243           | 0 879        |
| Number of key dimensions: 2                            |           |                                                   |         | [       | Selection       |              |

Select # key dimensions referring to increase in average adj. *R*<sup>2</sup>

Provide adj. *R*<sup>2</sup> between key dimension candidates and other dimensions in descending order for quick search of key dimensions with high performance



Generation

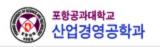


### **S3. Selection of Key Factor: Factor Analysis**

#### Determine key factors by referring to eigenvalue and cumulative percent variability

| Target Populat                        | ion     |          |          |  |  |
|---------------------------------------|---------|----------|----------|--|--|
| Database:                             | US Ar   | my (1988 | 3) 🗸     |  |  |
| Gender                                |         |          |          |  |  |
| Female                                |         |          |          |  |  |
| Male                                  |         |          |          |  |  |
| <ul> <li>Composite (%</li> </ul>      | \ E     | - M - T  | 70 : 30  |  |  |
| Composite (%                          | у г     | · IVI =  | 10, 30   |  |  |
| Age                                   |         |          |          |  |  |
| Number of Age G                       | iroups: |          | 2 🗸      |  |  |
| 10s                                   |         |          |          |  |  |
| . 20s                                 |         |          |          |  |  |
| Ages 30s                              |         | <b>V</b> |          |  |  |
| 40s                                   |         |          |          |  |  |
|                                       |         |          |          |  |  |
| Ratio (%)                             | 60      | 40       |          |  |  |
| Target<br>Anthropometric<br>Variables |         |          |          |  |  |
| Distributed RHI                       | M Ger   | neratio  | n        |  |  |
| S1, Extraction of                     | Key Di  | mension  | s        |  |  |
| Analysis                              |         | User     | -defined |  |  |
| Regression Ar                         | nalysis | (RA)     |          |  |  |
| Factor Analysi                        | is (FA) |          |          |  |  |
|                                       |         |          |          |  |  |

| $\odot$ | Principal | Component | Analysis | (PUA) |
|---------|-----------|-----------|----------|-------|
|         |           |           |          |       |


S2, Determination of Distributed Method

- 💿 Grid (Robinette and Annis, 1986)
- Clustering (Laing et al., 1999)
- Optimization (McCulloch et al., 1998)

```
S3, Determination of Body Sizes of RHMs
```

💿 Estimated Case 🛛 💿 Real Case

Generation



| P Factor Analysis (FA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Method of extraction: principal components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e.g., # key factors = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| Plot of eigenvalue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plot of cumulative % variabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | method of factor rota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion: Varima |
| 6.00<br>5.00<br>4.00<br>2.00<br>1.00<br>0.00<br>5.00<br>2.00<br>1.28<br>5.00<br>0.68<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80,000<br>70,000<br>65,22<br>Paulo<br>60,000<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,64<br>4,5<br>5<br>7,89<br>Percent<br>variability<br>% explained<br>↔ Cumulative % explaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Method of factor rotation <ul> <li>None</li> <li>Equimax</li> <li>Varimax</li> <li>Quartimax</li> <li>Promax</li> </ul> Number of key dimensions (factors):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Latin, 2003)<br>Factor loading a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cumulative percent variat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dility > 80% |
| Method of factor rotation<br>None Equimax Varimax Quartimax Promax<br>Number of key dimensions (factors): 4<br>, key dimensions (factors) = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Latin, 2003)<br>Factor loading a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plot of Factor loading & score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Method of factor rotation<br>None Equimax Varimax Quartimax Promax<br>Number of key dimensions (factors): 4<br>, key dimensions (factors) = 2<br>or Loadings and Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Latin, 2003)<br>Factor loading a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plot of Factor loading & score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Method of factor rotation         None       Equimax       Varimax       Quartimax       Promax         Number of key dimensions (factors):       4       -         , key dimensions (factors):       4       -         , key dimensions (factors):       4       -         or Loadings and Scores       -       -         or Loadings       Factor scores       -         0,380       0,027       -         0,380       0,027       -         0,074       0,846       -         0,074       0,846       -         0,074       0,115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Latin, 2003)<br>Factor loading a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plot of Factor loading & score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Method of factor rotation         None       Equimax       Varimax       Quartimax       Promax         Number of key dimensions (factors):       4       -         , key dimensions (factors):       4       -         , key dimensions (factors):       4       -         or Loadings and Scores       -       -         or Loadings       Factor scores       -         0,380       0,027       -       -         0,930       0,202       -       -       1         0,074       0,846       -       -       2         0,647       0,118       -       -       2       -         0,074       0,647       0,118       -       -       2       -         0,074       0,647       0,118       -       -       2       -       1.150       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       5       0       0       0       0 </td <td>(Latin, 2003)<br/>Factor loading a<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>File<br/>Fil</td> <td>Plot of Factor loading &amp; score<br/>Plot of Factor loading &amp; score<br/>Plot of Factor loading <math>\mathbb{A}</math> score<br/><math>\mathbb{P}</math> <math>\mathbb{P}</math> <math>\mathbb{P}</math> <math>\mathbb{Q}</math> <math>\mathbb{Q}</math> <math>\mathbb{Q}</math> <math>\mathbb{Q}</math> <math>\mathbb{P}</math> <math>\mathbb{P}</math> <math>\mathbb{D}</math> <math>\mathbb{P}</math><br/>0.8<br/>0.6<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.4<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.2<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.4<br/>0.6<br/>0.4<br/>0.4<br/>0.6<br/>0.4<br/>0.6<br/>0.4<br/>0.6<br/>0.4<br/>0.6<br/>0.4<br/>0.6<br/>0.4<br/>0.6<br/>0.4<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6<br/>0.6</td> <td></td> | (Latin, 2003)<br>Factor loading a<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>File<br>Fil | Plot of Factor loading & score<br>Plot of Factor loading & score<br>Plot of Factor loading $\mathbb{A}$ score<br>$\mathbb{P}$ $\mathbb{P}$ $\mathbb{P}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{Q}$ $\mathbb{P}$ $\mathbb{P}$ $\mathbb{D}$ $\mathbb{P}$<br>0.8<br>0.6<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.4<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.6<br>0.4<br>0.4<br>0.6<br>0.4<br>0.6<br>0.4<br>0.6<br>0.4<br>0.6<br>0.4<br>0.6<br>0.4<br>0.6<br>0.4<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 |              |

# **S3. Selection of Key Factor: Principal Component Analysis**

#### Refer to eigenvalue and cumulative percent variability

e.g., # key dimensions = 3

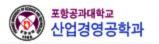
| Target F                      | opulat   | ion      |          |           |    |
|-------------------------------|----------|----------|----------|-----------|----|
| Database                      | e:       | US Ar    | my (198  | 38)       | •  |
| Gender-                       |          |          |          |           |    |
| 🔘 Fema                        | le       |          |          |           |    |
| 🔘 Male                        |          |          |          |           |    |
| Comp                          | osite (% | ) F      | : M =    | 70 ;      | 30 |
| Age                           |          |          |          |           |    |
| Number                        | of Age G | roups:   |          | 2         | •  |
|                               | 10s      |          |          |           |    |
| Ages                          | 20s      | <b>V</b> |          |           |    |
| ngeo                          | 30s      |          | <b>v</b> |           |    |
|                               | 40s      |          |          |           |    |
| Ratio (%)                     | ) (      | 60       | 40       |           |    |
| Target<br>Anthrop<br>Variable |          | :        | Re-      | selection |    |

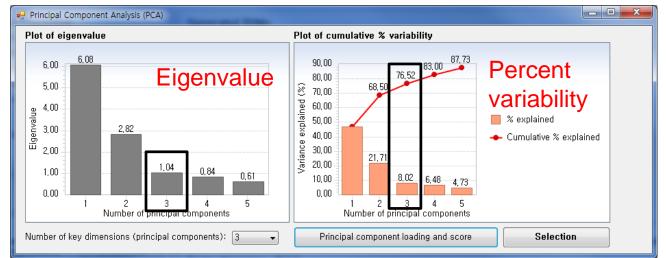
#### **Distributed RHM Generation**

| S1, Extraction of Key Dimensions |              |  |  |
|----------------------------------|--------------|--|--|
| Analysis                         | User-defined |  |  |
| Regression Analysi               | is (RA)      |  |  |
| 💿 Factor Analysis (FA            | 4)           |  |  |

```
Principal Component Analysis (PCA)
```

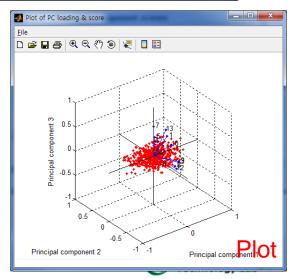
```
S2, Determination of Distributed Method-
```


```
💿 Grid (Robinette and Annis, 1986)
```


- Clustering (Laing et al., 1999)
- Optimization (McCulloch et al., 1998)

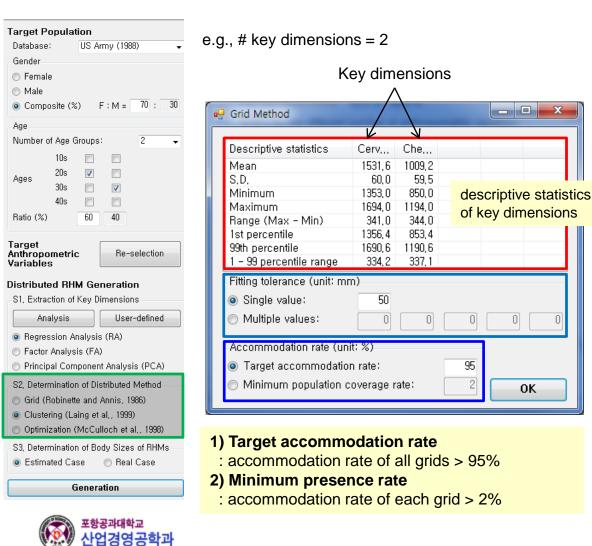
```
S3, Determination of Body Sizes of RHMs
```

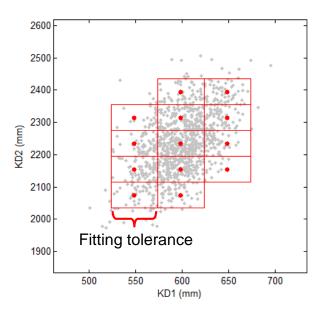
💿 Estimated Case 🛛 🔘 Real Case


Generation





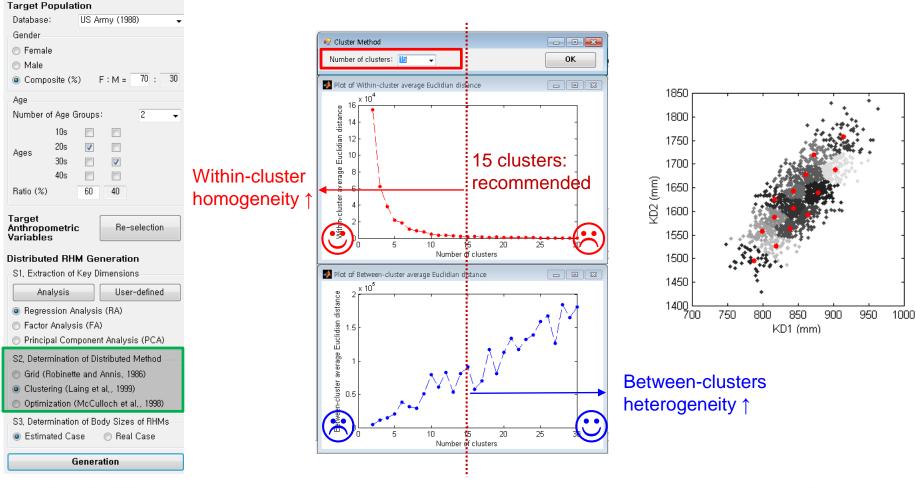

Eigenvalue > 1 or cumulative percent variability > 80% (Latin, 2003)


| Princip | al compo | onent lo | adings  |     |       | Princip | al comp | onent se | cores        |     |     |   |
|---------|----------|----------|---------|-----|-------|---------|---------|----------|--------------|-----|-----|---|
| No,     | PC1      | PC2      | PC3     | PC4 | PC5 🔺 | No,     | PC1     | PC2      | PC3          | PC4 | PC5 | - |
| 1       | -0.150   | -0.182   | 0,580   |     |       | 1       | -0,128  | 2.053    | -1,690       |     |     |   |
| 2       | -0, 326  | -0,267   | -0,257  |     |       | 2       | 1,879   | 1,601    | -0,247       |     |     |   |
| 3       | -0,259   | 0, 380   | -0,193  |     | =     | 3       | 4,729   | 2,217    | 0,682        |     |     |   |
| 4       | 8223     | -0.232   | 0,264   |     |       | 4       | -2,510  | 0,773    | 0,393        |     |     |   |
| 5       | -0,378   | -1.22    | 201     | าตร |       | 5       | -0,787  | -0.336   | <b>S:00(</b> | ore | S   |   |
| 6       | -0,281   | -0,280   | -0,179  | .90 |       | 6       | -0,923  | -2,718   | -0,756       |     |     |   |
| 7       | -0,227   | 0,287    | 0,406   |     |       | 7       | 0,037   | -1,087   | 0,075        |     |     |   |
| 8       | -0,259   | 0,126    | -0, 325 |     |       | 8       | -0,984  | -0,422   | 0,429        |     |     |   |
| 9       | -0,297   | 0,343    | 0,128   |     | -     | 9       | -0,420  | 1,955    | -1,503       |     |     |   |
| 4       |          |          |         |     | •     | 10      | 0,492   | -1,720   | -0,053       |     |     | - |



# **S4. Selection of DRHM Generation Method: Grid**

#### Set fitting tolerance (size of a grid) and accommodation percentage





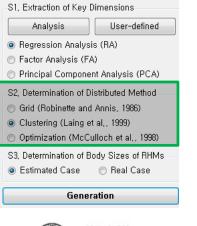

Ergonomic Design Technology Lab

## **S4. Selection of DRHM Generation Method: Clustering**

#### Determine the number of DRHMs referring to within- & between-cluster distance plots








## **S4. Selection of DRHM Generation Method: Optimization**

#### Set the number of DRHMs with the target accommodation percentage

| Target F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | opulat   | ion      |          |           |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-----------|----|
| Databas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e:       | US Ar    | my (198  | 38)       | •  |
| Gender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |          |           |    |
| 💿 Fema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le       |          |          |           |    |
| 💿 Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |          |           |    |
| Comp<br>Of Com | osite (% | ) F      | : M =    | 70 :      | 30 |
| Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |          |           |    |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Age G | iroups:  |          | 2         | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10s      |          |          |           |    |
| Ages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20s      | <b>V</b> |          |           |    |
| -1963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30s      |          | <b>v</b> |           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40s      |          |          |           |    |
| Ratio (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )        | 60       | 40       |           |    |
| Target<br>Anthrop<br>Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | : [      | Re-      | selection |    |

#### **Distributed RHM Generation**



| 🖳 Optimization Method 📃 💼      |     |
|--------------------------------|-----|
| Number of RHMs:                | 15  |
| Maximum number of iterations:  | 100 |
| Target accommodation rate (%): | 95  |
| ОК                             |     |
|                                |     |

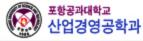
1900

where: n = number of the target population,

 $l(p_i) = 1$ oss score of person *i*,

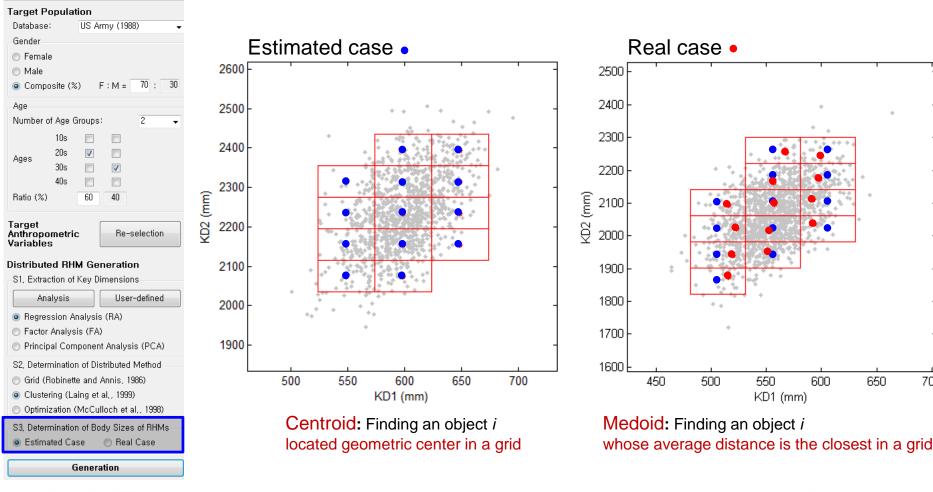
 $l(c_a) =$ loss cutoff to determine whether a person is accommodated or not,

 $d(\mathbf{x}_i, \mathbf{y}_s) =$  distance between person *i* and its nearest grid,


k = number of key dimensions,

 $x_{ii}$  = body size of key dimension *j* of person *i*, and

 $y_{si}$  = centroid of the nearest grid s in key dimension j.


 $l(p(x_k)) \leq l(c_{\alpha}) \leq l(p(x_m)).$ 



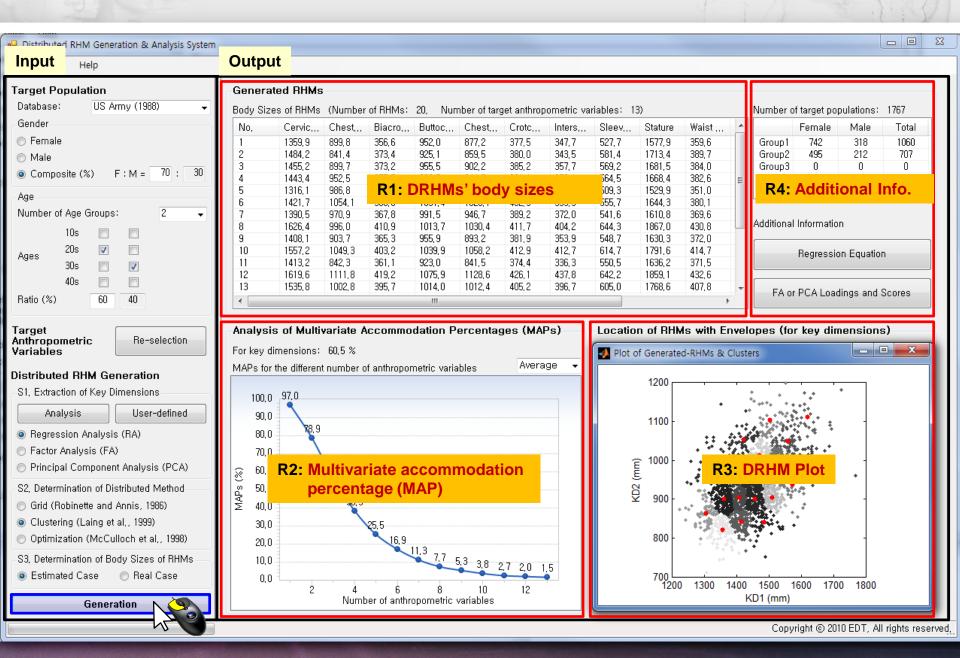


### **S5.** Determination of **Body Sizes of DRHMs**

Select a body sized determination method








650

700

600

#### **Specialized DRHM Analysis**



### **R1. Body Sizes of DRHMs**

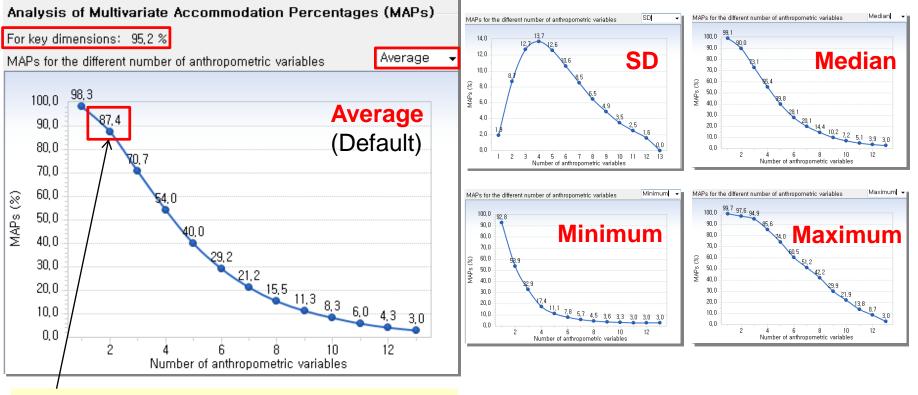
#### □ Provide generated DRHMs' body sizes by anthropometric variable

e.g., # DRHMs = 20, # anthropometric variables = 13

|     | zes of RHMs | (Number | of RHMs: | 20, Num | nber of targ | jet anthrop | ometric vai | riables: 13 | 3)      |        |
|-----|-------------|---------|----------|---------|--------------|-------------|-------------|-------------|---------|--------|
| No, | Cervic      | Chest   | Biacro   | Buttoc  | Chest        | Crotc       | Inters      | Sleev       | Stature | Waist  |
| 1   | 1359,9      | 899, 8  | 356,6    | 952,0   | 877,2        | 377,5       | 347,7       | 527,7       | 1577,9  | 359,6  |
| 2   | 1484,2      | 841,4   | 373,4    | 925, 1  | 859, 5       | 380, 0      | 343,5       | 581,4       | 1713,4  | 389, 7 |
| 3   | 1455, 2     | 899, 7  | 373,2    | 955, 5  | 902, 2       | 385, 2      | 357,7       | 569, 2      | 1681,5  | 384,0  |
| 4   | 1443,4      | 952, 5  | 375,5    | 983, 5  | 944,7        | 391,1       | 372,1       | 564, 5      | 1668,4  | 382,6  |
| 5   | 1316, 1     | 986, 8  | 356, 1   | 997, 3  | 940,8        | 385, 2      | 368, 9      | 509, 3      | 1529,9  | 351,0  |
| 6   | 1421,7      | 1054, 1 | 380,0    | 1037,4  | 1026, 7      | 402,5       | 399, 9      | 555, 7      | 1644, 3 | 380, 1 |
| 7   | 1390,5      | 970, 9  | 367,8    | 991,5   | 946, 7       | 389, 2      | 372,0       | 541,6       | 1610,8  | 369,6  |
| 8   | 1626,4      | 996, 0  | 410,9    | 1013,7  | 1030, 4      | 411,7       | 404,2       | 644, 3      | 1867,0  | 430,8  |
| 9   | 1408, 1     | 903, 7  | 365, 3   | 955, 9  | 893, 2       | 381,9       | 353, 9      | 548, 7      | 1630, 3 | 372,0  |
| 10  | 1557,2      | 1049, 3 | 403, 2   | 1039,9  | 1058, 2      | 412,9       | 412,7       | 614,7       | 1791,6  | 414,7  |
| 11  | 1413,2      | 842, 3  | 361,1    | 923, 0  | 841,5        | 374,4       | 336, 3      | 550, 5      | 1636, 2 | 371,5  |
| 12  | 1619,6      | 1111,8  | 419,2    | 1075,9  | 1128,6       | 426, 1      | 437,8       | 642,2       | 1859, 1 | 432,6  |
| 13  | 1535,8      | 1002,8  | 395, 7   | 1014,0  | 1012,4       | 405, 2      | 396, 7      | 605, 0      | 1768,6  | 407,8  |

Generated DRHMs

#### DRHMs' body size by anthropometric variable





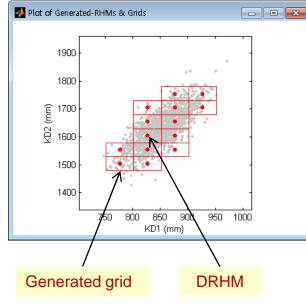

## **R2. Multivariate Accommodation Percentage**

Provide multivariate accommodation percentages (average, SD, median, minimum, and maximum) by the number of anthropometric variables

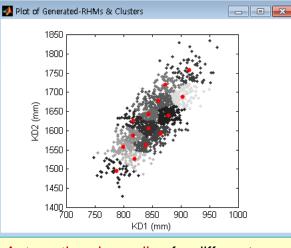
#### e.g., # anthropometric variables = 13



Average of accommodation percentages of 78 cases  $(_{13}C_2)$ 

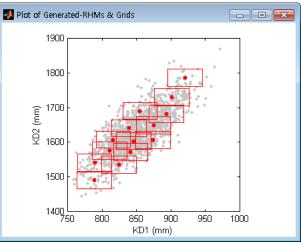






## **R3. DRHM Plot**

Provide plot of DRHMs on the grid in the distribution of key dimensions/factors by the DRHM generation method

#### Grid method





#### **Clustering** method



Automatic color coding for different clusters

#### **Optimization** method

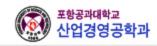




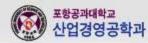


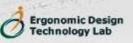
## **R4. Additional Information**

#### Provide population information, regression equations for RA, and factor/principal component loadings and scores for FA/PCA


| Number of target populations: 1767 |        |       |      |  |  |  |  |  |  |  |  |
|------------------------------------|--------|-------|------|--|--|--|--|--|--|--|--|
|                                    | Female | Total |      |  |  |  |  |  |  |  |  |
| Group1                             | 742    | 318   | 1060 |  |  |  |  |  |  |  |  |
| Group2                             | 495    | 212   | 707  |  |  |  |  |  |  |  |  |
| Group3                             | 0      | 0     | 0    |  |  |  |  |  |  |  |  |
| Group4                             | 0      | 0     | 0    |  |  |  |  |  |  |  |  |
| Total                              | 1237   | 530   | 1767 |  |  |  |  |  |  |  |  |

Additional Information


Regression Equation

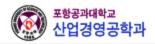

FA or PCA Loadings and Scores

| •                                           | •                                                                | · ·                                    | key dime |     |        | -                                                | -                                                                                      |                                                                                           |         |          |         |     |        |
|---------------------------------------------|------------------------------------------------------------------|----------------------------------------|----------|-----|--------|--------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------|----------|---------|-----|--------|
|                                             | pometric V                                                       | ariable                                |          | 30  | β1     | β2                                               | β3                                                                                     | β4                                                                                        | β5      |          | sted R² |     |        |
|                                             | ead Reach                                                        |                                        |          | 848 | -0,889 | 1,723                                            | _                                                                                      |                                                                                           |         |          | 912     | - 1 |        |
|                                             | ead Reach                                                        |                                        |          | 499 | 0,038  | 0,765                                            |                                                                                        |                                                                                           |         |          | 765     |     |        |
| Uverhe                                      | ead Reach-                                                       | Extended                               | 30,      | 468 | -0,877 | 1,761                                            |                                                                                        |                                                                                           |         | U,       | 907     |     |        |
|                                             | 0.0                                                              | Over                                   | hood     | Dee | ah 1   | 0 0 4 0                                          | 0.00                                                                                   |                                                                                           | tingl   | Joigh    | + . 1   | 700 | . Stat |
|                                             | • •                                                              |                                        |          |     |        |                                                  | - 0.88                                                                                 |                                                                                           | •       | •        |         | 123 | × Siai |
|                                             | $\Rightarrow 0$                                                  | verhe                                  | ad re    | ach | estima | ation e                                          | quatior                                                                                | n by ke                                                                                   | ey din  | nensi    | ons     |     |        |
| donon                                       | ident variab                                                     | les (Keu i                             | limencia | ne) |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
| Variabli                                    |                                                                  |                                        | annenalu |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
| X1                                          | Sitting I                                                        |                                        |          |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
| X2                                          | Stature                                                          | leight                                 |          |     |        |                                                  |                                                                                        |                                                                                           |         |          | 512     |     |        |
|                                             |                                                                  |                                        |          |     |        |                                                  |                                                                                        |                                                                                           |         |          | ОК      |     |        |
|                                             | Stature                                                          |                                        |          |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
|                                             | Stature                                                          |                                        |          |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
|                                             | Stature                                                          |                                        |          |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
|                                             | Jaure                                                            |                                        |          |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     |        |
|                                             |                                                                  | nd Scores                              |          |     |        |                                                  |                                                                                        |                                                                                           |         |          |         |     | ī      |
| Factor                                      | Loadings a                                                       |                                        |          | _   |        | Faata                                            |                                                                                        | of gonorg                                                                                 | tod BH  |          |         |     | ]      |
| Factor<br>actor                             | Loadings a                                                       |                                        |          |     |        |                                                  | SCORES (                                                                               | _                                                                                         |         | Ms       |         |     | 9      |
| Factor<br>actor                             | Loadings a<br>loadings<br>F1                                     | F2                                     | F3       | F4  | F5     | Factor                                           | F1                                                                                     | -<br>F2                                                                                   | ited RH |          |         | ×   | )      |
| Factor<br>Factor<br>No,<br>1                | Loadings a<br>loadings<br>F1<br>0,820                            | F2<br>0,527                            |          | F4  | F5     | No,                                              | F1<br>-2,093                                                                           | F2<br>-1,329                                                                              |         | Ms       |         |     | 1      |
| Factor<br>actor<br>No,<br>1<br>2            | Loadings a<br>loadings<br>F1<br>0,820<br>0,306                   | F2<br>0,527<br>0,950                   |          | F4  | F5     | No,<br>1<br>2                                    | F1<br>-2,093<br>0,709                                                                  | F2<br>-1,329<br>-2,208                                                                    |         | Ms       |         |     | 1      |
| Factor<br>Factor<br>No,<br>1<br>2<br>3      | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827          | F2<br>0,527<br>0,950<br>0,431          |          | F4  | F5     | No.<br>1<br>2<br>3                               | F1<br>-2,093<br>0,709<br>0,254                                                         | F2<br>-1,329<br>-2,208<br>-2,182                                                          |         | Ms       |         | Â   | 9      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No,<br>1<br>2<br>3<br>4                          | F1<br>-2,093<br>0,709<br>0,254<br>1,966                                                | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171                                                 |         | Ms       |         | Â   | )      |
| Factor<br>Factor<br>No,<br>1<br>2<br>3      | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827          | F2<br>0,527<br>0,950<br>0,431          |          | F4  | F5     | No,<br>1<br>2<br>3<br>4<br>5                     | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957                                       | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171<br>-1,357                                       |         | Ms       |         | Â   | )      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No,<br>1<br>2<br>3<br>4                          | F1<br>-2,093<br>0,709<br>0,254<br>1,966                                                | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171                                                 |         | Ms       |         | Â   |        |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No,<br>1<br>2<br>3<br>4<br>5                     | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957                                       | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171<br>-1,357                                       |         | Ms       |         | Â   | 9      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No.<br>1<br>2<br>3<br>4<br>5<br>6                | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957<br>-1,744                             | F2<br>-1, 329<br>-2, 208<br>-2, 182<br>1, 171<br>-1, 357<br>-0, 535                       |         | Ms       |         | Â   | ]      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957<br>-1,744<br>1,664                    | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171<br>-1,357<br>-0,535<br>0,478                    |         | Ms       |         | Â   | ]      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957<br>-1,744<br>1,664<br>1,866<br>-1,779 | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171<br>-1,357<br>-0,535<br>0,478<br>-0,490<br>0,522 |         | Ms       |         | Â   | 9      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957<br>-1,744<br>1,664<br>1,866           | F2<br>-1, 329<br>-2, 208<br>-2, 182<br>1, 171<br>-1, 357<br>-0, 535<br>0, 478<br>-0, 490  |         | Ms       |         | Â   | )      |
| Factor<br>Factor<br>No.<br>1<br>2<br>3<br>4 | Loadings a<br>loadings<br>F1<br>0,820<br>0,306<br>0,827<br>0,954 | F2<br>0,527<br>0,950<br>0,431<br>0,277 |          | F4  | F5     | No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | F1<br>-2,093<br>0,709<br>0,254<br>1,966<br>1,957<br>-1,744<br>1,664<br>1,866<br>-1,779 | F2<br>-1,329<br>-2,208<br>-2,182<br>1,171<br>-1,357<br>-0,535<br>0,478<br>-0,490<br>0,522 |         | Hs<br>F4 |         | Â   | 9      |



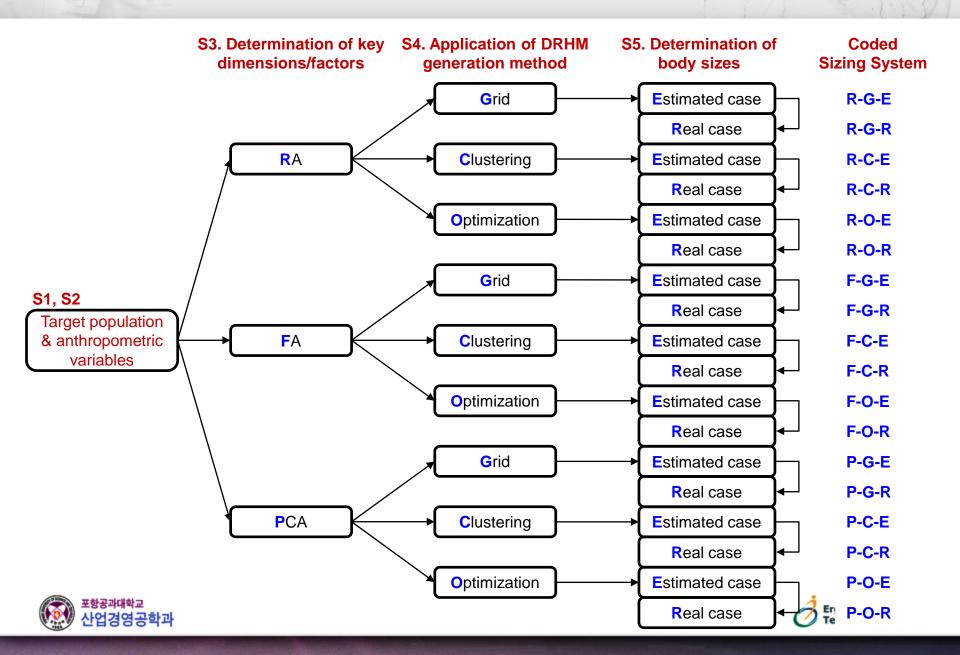
# **Design Application**



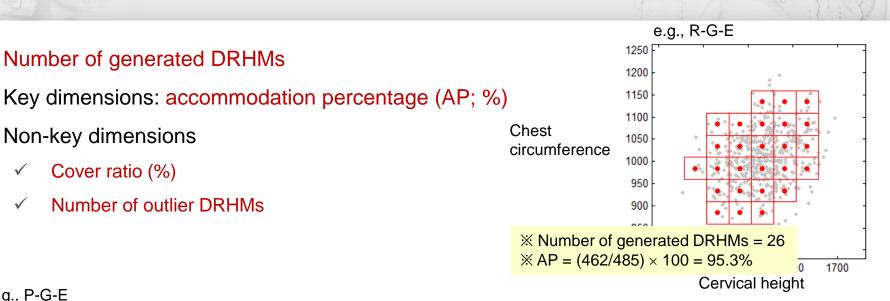



## **Design Application Context**

- Establish an optimal men's sizing system for flight suit design
- □ Target population & anthropometric variables
  - $\checkmark$  US Army male pilots (*n* = 485; Gordon et al., 1998)
  - ✓ 13 anthropometric variables for flight suit design (Jeon et al., 2009)




| Major close | Sub alaga     | Macaurament tura | Anthronomotric verichle (A)() | Codo | Descriptive | statistics ( | unit: mm) |
|-------------|---------------|------------------|-------------------------------|------|-------------|--------------|-----------|
| Major class | Sub class     | Measurement type | Anthropometric variable (AV)  | Code | Mean        | SD           | Range     |
| Trunk       | Chest         | Width            | Biacromial breadth            | AV1  | 400.6       | 17.5         | 105.0     |
| Leg/Foot    | Upper Leg/Hip | Circumference    | Buttock circumference         | AV2  | 991.5       | 55.0         | 351.0     |
| Head/Neck   | Neck          | Height           | Cervical height               | AV3  | 1531.8      | 60.0         | 341.0     |
| Trunk       | Chest         | Circumference    | Chest circumference           | AV4  | 1009.2      | 59.6         | 344.0     |
| Trunk       | Chest         | Circumference    | Chest circumference – at scye | AV5  | 1035.8      | 55.3         | 309.0     |
| Trunk       | Combined      | Length           | Crotch length                 | AV6  | 772.0       | 47.3         | 339.0     |
| Trunk       | Back          | Length           | Interscye distance            | AV7  | 408.7       | 28.2         | 164.0     |
| Arm/Hand    | Combined      | Length           | Sleeve outseam                | AV8  | 601.4       | 29.9         | 154.0     |
| Overall     | -             | Height           | Stature                       | AV9  | 1771.0      | 64.8         | 362.0     |
| Trunk       | Back          | Length           | Waist back length             | AV10 | 421.6       | 21.2         | 130.0     |
| Trunk       | Abdomen       | Circumference    | Waist circumference           | AV11 | 856.4       | 65.7         | 375.0     |
| Trunk       | Abdomen       | Height           | Waist height                  | AV12 | 1131.4      | 48.1         | 274.0     |
| Leg/Foot    | Upper Leg/Hip | Length           | Waist hip length              | AV13 | 184.0       | 19.6         | 118.0     |






#### **Decision Tree: 18 Sizing System Alternatives**



#### **Analysis Method: Measure**



#### e.g., P-G-E

 $\checkmark$ 

 $\checkmark$ 

|     |                               |        | Original<br>dimensions |        |        | erate DRH |                  | Generated<br>dimen |            | Outlier<br>dimensions |            |
|-----|-------------------------------|--------|------------------------|--------|--------|-----------|------------------|--------------------|------------|-----------------------|------------|
| No. | Anthropometric variable       | Min    | Max                    | Range  | Min    | Max       | Covered<br>Range | DRHM<br>16         | DRHM<br>23 | DRHM<br>16            | DRHM<br>23 |
| 1   | Biacromial breadth            | 347.0  | 452.0                  | 105.0  | 367.2  | 435.7     | 68.5             | 378.0              | 367.2      | ×                     | ×          |
| 2   | Buttock circumference         | 849.0  | 1200.0                 | 351.0  | 879.9  | 1132.5    | 252.6            | 999.1              | 895.1      | х                     | ×          |
| 3   | Chest circumference – at syce | 894.0  | 1203.0                 | 309.0  | 937.0  | 1183.0    | 246.0            | 1077.6             | 954.6      | х                     | ×          |
| 4   | Crotch length                 | 314.0  | 467.0                  | 153.0  | 321.8  | 461.1     | 139.3            | 380.1              | 347.2      | х                     | ×          |
| 5   | Interscye distance            | 388.0  | 502.0                  | 164.0  | 354.5  | 485.0     | 130.5            | 428.7              | 378.1      | х                     | ×          |
| 6   | Sleeve outseam                | 530.0  | 684.0                  | 154.0  | 528.3  | 676.1     | 146.1            | 528.5              | 528.3      | 0                     | 0          |
| 7   | Stature                       | 1596.0 | 2056.0                 | 460.0  | 1586.2 | 1955.6    | 359.6            | 1586.9             | 1586.2     | 0                     | 0          |
| 8   | Waist back length             | 363.0  | 493.0                  | 130.0  | 378.6  | 464.4     | 85.8             | 378.7              | 378.6      | ×                     | ×          |
| 9   | Waist circumference           | 689.0  | 1064.0                 | 375.0  | 709.6  | 1017.7    | 308.1            | 927.1              | 781.3      | ×                     | ×          |
| 10  | Waist height                  | 993.0  | 1267.0                 | 274.0  | 999.8  | 1262.9    | 263.1            | 1009.7             | 999.8      | х                     | ×          |
| 11  | Waist hip length              | 122.0  | 240.0                  | 118.0  | 127.1  | 229.4     | 102.3            | 155.2              | 157.4      | х                     | ×          |
|     | Total                         | -      | -                      | 2593.0 | -      | -         | 2101.9           | -                  | -          | 2                     | 2          |

X Cover ratio = (2101.9/2593.0) × 100 = 81.0%

Number of generated DRHMs

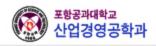
Number of outlier DRHMs

Non-key dimensions

Cover ratio (%)

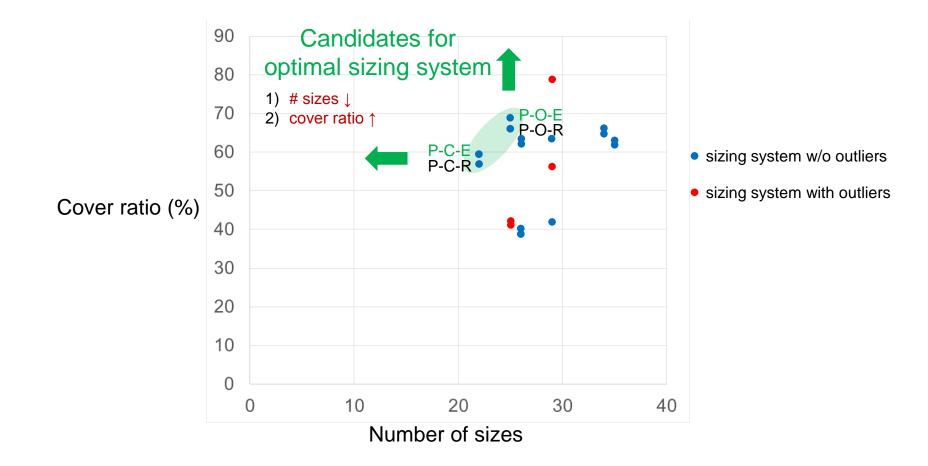
X Number of outlier DRHMs = 2

👗 🖉 산업경영공학과


#### e.g., DRHM 16 and 23

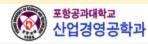


## **Comparison of Sizing Systems**


#### □ Total calculation time of generating 18 sizing systems $\approx$ 2 hrs

|     |               |                                                    |                           | Non-key<br>dimensions |                         |  |  |  |
|-----|---------------|----------------------------------------------------|---------------------------|-----------------------|-------------------------|--|--|--|
| No. | Sizing System | Accommodation percentage for<br>key dimensions (%) | Number of generated DRHMs | Cover ratio (%)       | Number of outlier DRHMs |  |  |  |
| 1   | R-G-E         | 95.3                                               | 26                        | 62.2                  | -                       |  |  |  |
| 2   | R-G-R         | 83.3                                               | 26                        | 63.0                  | -                       |  |  |  |
| 3   | R-C-E         | 95.3                                               | 34                        | 65.9                  | -                       |  |  |  |
| 4   | R-C-R         | 92.4                                               | 34                        | 65.0                  | -                       |  |  |  |
| 5   | R-O-E         | 95.1                                               | 35                        | 61.9                  | -                       |  |  |  |
| 6   | R-O-R         | 91.8                                               | 35                        | 62.8                  | -                       |  |  |  |
| 7   | F-G-E         | 95.1                                               | 29                        | 56.2                  | 2                       |  |  |  |
| 8   | F-G-R         | 91.1                                               | 29                        | 41.8                  | -                       |  |  |  |
| 9   | F-C-E         | 95.5                                               | 25                        | 41.5                  | 1                       |  |  |  |
| 10  | F-C-R         | 91.1                                               | 25                        | 41.6                  | 1                       |  |  |  |
| 11  | F-O-E         | 96.1                                               | 26                        | 38.8                  | -                       |  |  |  |
| 12  | F-O-R         | 91.8                                               | 26                        | 39.9                  | -                       |  |  |  |
| 13  | P-G-E         | 95.3                                               | 29                        | 78.7                  | 3                       |  |  |  |
| 14  | P-G-R         | 91.1                                               | 29                        | 63.4                  | -                       |  |  |  |
| 15  | P-C-E         | 95.1                                               | 22                        | 59.4                  | -                       |  |  |  |
| 16  | P-C-R         | 91.5                                               | 22                        | 57.3                  | -                       |  |  |  |
| 17  | P-O-E         | 95.1                                               | 25                        | 68.7                  | -                       |  |  |  |
| 18  | P-O-R         | 92.4                                               | 25                        | 66.1                  | -                       |  |  |  |

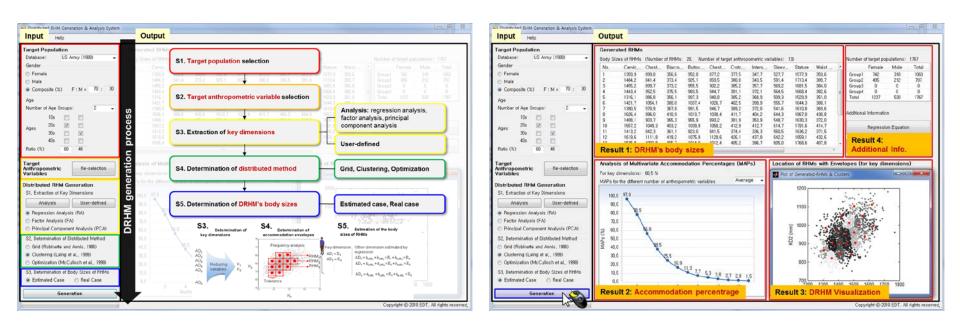




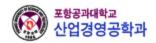

# **Optimal Sizing System**



 $\Rightarrow$  Candidates: P-C-E (22 sizes; 59%) vs. P-O-E (25 sizes; 69%)


 $\Rightarrow$  Economical sizing system: P-C-E (less than # sizes of P-O-E)

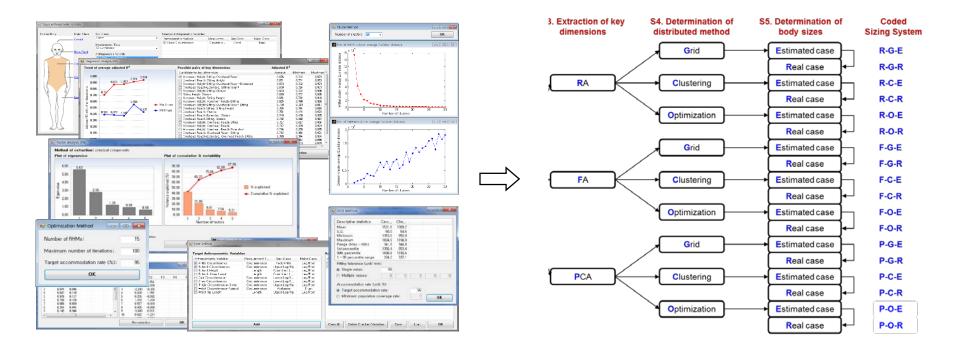




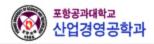

#### **Discussion** (1/2)

Developed a computerized system for DRHM generation and analysis by incorporating the DRHM generation process and methods




 $\Rightarrow$  Can save time and effort in establishing a desirable sizing system



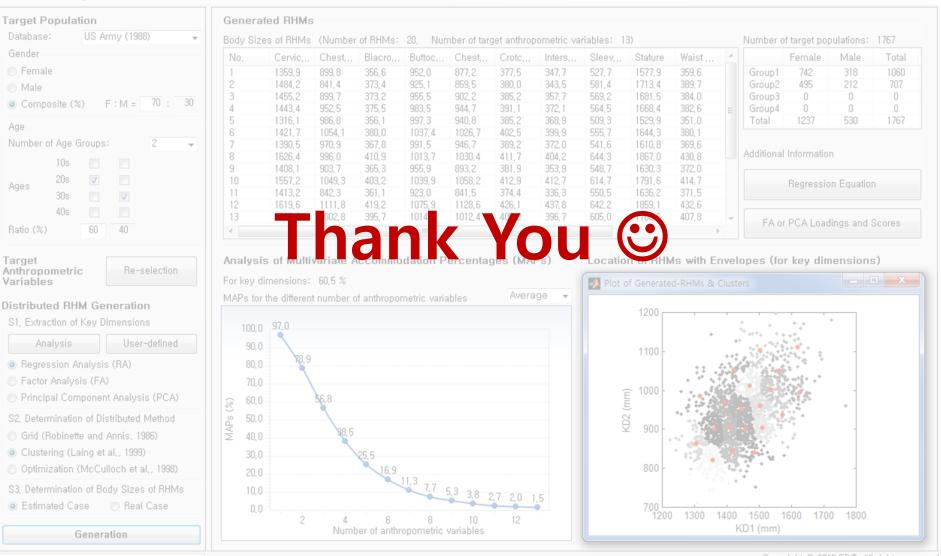



#### **Discussion** (2/2)

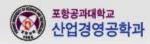
Developed sophisticated interfaces incorporating complex and various algorithms for DRHM generation



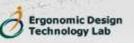
⇒ Helpful for identifying an optimal sizing system out of sizing system alternatives easily and efficiently







#### Q & A

#### 🖳 Distributed RHM Generation & Analysis System

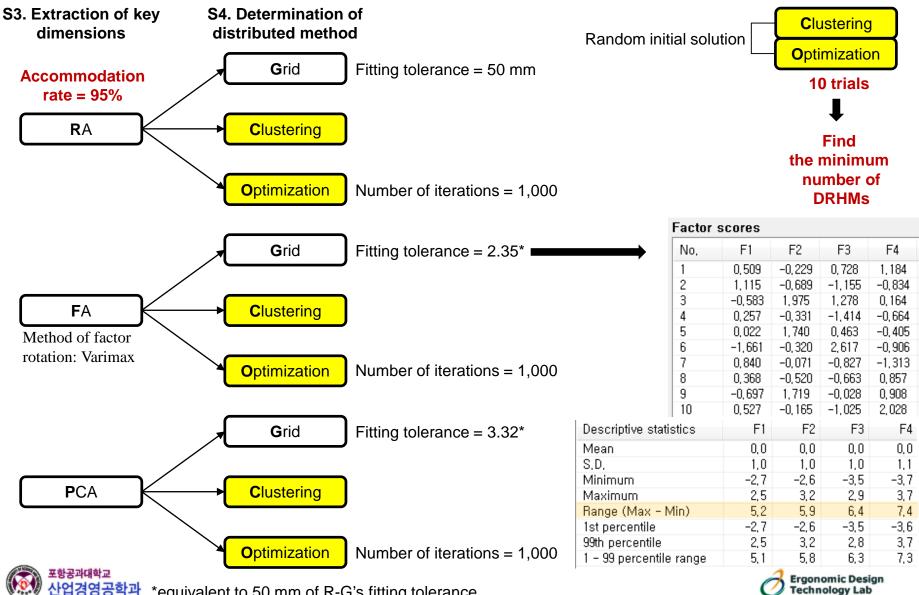

#### File View Help



- O X



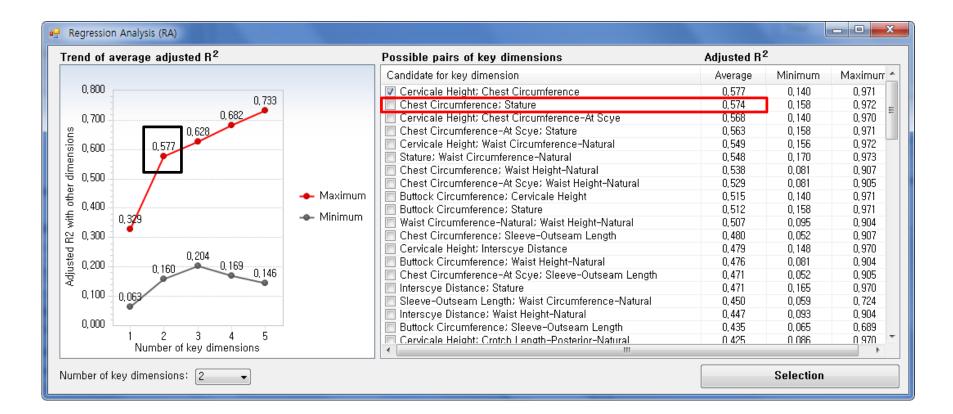
# **APPENDIX**




#### **Demonstration:** RA – Grid – Estimated Case

#### 🔜 Distributed RHM Generation & Analysis System

#### File View Help **Target Population** Generated RHMs US Army (1988) Database: -Body Sizes of RHMs (Number of RHMs: 000, Number of target anthropometric variables: 000) Number of target populations: 0000 Gender No. Female Male Total 22 Female Group1 Group2 Male Group3 F:M = 70 : 30 Composite (%) Group4 Total Age Number of Age Groups: 1 -Additional Information 10s 們 20s 100 **Regression Equation** Ages 30s F 40s 1 FA or PCA Loadings and Scores Ratio (%) 100 Analysis of Multivariate Accommodation Percentages (MAPs) Location of RHMs with Envelopes (for key dimensions) Target Anthropometric Selection For key dimensions: 00,0 % Variables Average MAPs for the different number of anthropometric variables Notice: Will be plotted when number of key dimensions is 2 or 3 **Distributed RHM Generation** S1, Extraction of Key Dimensions 99,0 96,0 100.0 91.0 User-defined Analysis 90.0 84.0 🗇 Regression Analysis (RA) 80.0 Factor Analysis (FA) 70.0 C Principal Component Analysis (PCA) 60,0 (%) 51.0 MAPs S2. Determination of Distributed Method 50,0 Grid (Robinette and Annis, 1986) 40,0 Clustering (Laing et al., 1999) 30,0 19.0 Optimization (McCulloch et al., 1998) 20,0 S3, Determination of Body Sizes of RHMs 10,0 0.0 Estimated Case 0,0 2 3 5 9 10 4 6 7 8 Number of anthropometric variables Generation Copyright @ 2010 EDT, All rights reserved,

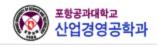

#### **Generation Method**



\*equivalent to 50 mm of R-G's fitting tolerance

## **Key Dimensions for Flight Suit Design**

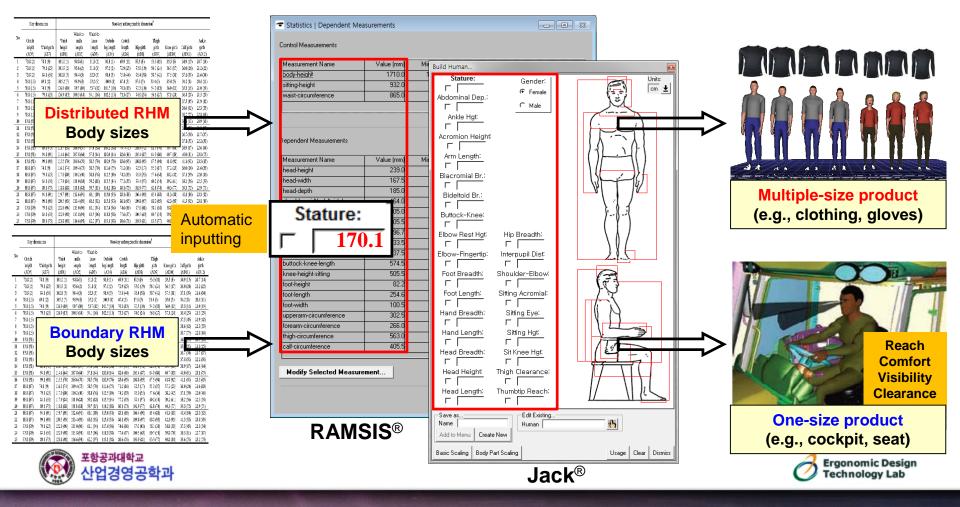
Chest circumference and Stature considering both performance (average adjusted R<sup>2</sup> with other dimensions = 0.574; current key dimensions) and usability








## **Comparison of Sizing Systems: Average of MAPs**


|     | Sizing | Generated          |      |      |      |      | Num  | ber of ar | thropome | etric varia | oles |      |      |      |     |
|-----|--------|--------------------|------|------|------|------|------|-----------|----------|-------------|------|------|------|------|-----|
| No. | System | number of<br>DRHMs | 1    | 2    | 3    | 4    | 5    | 6         | 7        | 8           | 9    | 10   | 11   | 12   | 13  |
| 1   | R-G-E  | 20                 | 98.7 | 90.7 | 76.8 | 61.7 | 48.3 | 37.5      | 29.2     | 23.0        | 18.4 | 15.1 | 12.6 | 10.7 | 9.3 |
| 2   | R-G-R  | 29                 | 98.9 | 91.3 | 77.6 | 62.3 | 48.5 | 37.2      | 28.6     | 22.1        | 17.4 | 13.9 | 11.4 | 9.5  | 8.0 |
| 3   | R-C-E  | 0.4                | 99.1 | 92.4 | 80.4 | 66.7 | 53.8 | 42.8      | 33.9     | 26.9        | 21.4 | 17.3 | 14.0 | 11.5 | 9.5 |
| 4   | R-C-R  | 34                 | 98.9 | 92.1 | 80.2 | 66.7 | 54.0 | 43.1      | 34.2     | 27.2        | 21.7 | 17.5 | 14.2 | 11.6 | 9.5 |
| 5   | R-O-E  | 25                 | 98.8 | 92.3 | 80.3 | 66.6 | 53.7 | 42.8      | 34.0     | 27.0        | 21.6 | 17.3 | 14.0 | 11.4 | 9.3 |
| 6   | R-O-R  | 35                 | 98.7 | 91.9 | 80.0 | 66.5 | 53.8 | 43.1      | 34.3     | 27.3        | 21.8 | 17.5 | 14.0 | 11.3 | 9.1 |
| 7   | F-G-E  |                    | 93.0 | 78.0 | 59.9 | 43.9 | 31.6 | 22.8      | 16.6     | 12.4        | 9.5  | 7.4  | 5.9  | 4.7  | 3.9 |
| 8   | F-G-R  | 29                 | 88.5 | 71.5 | 54.7 | 40.7 | 29.9 | 21.9      | 16.1     | 11.8        | 8.8  | 6.5  | 4.9  | 3.6  | 2.7 |
| 9   | F-C-E  | 05                 | 87.3 | 69.2 | 52.5 | 39.1 | 29.1 | 21.8      | 16.7     | 13.1        | 10.5 | 8.6  | 7.2  | 6.2  | 5.4 |
| 10  | F-C-R  | 25                 | 87.1 | 68.3 | 51.6 | 38.4 | 28.7 | 21.6      | 16.5     | 12.9        | 10.2 | 8.3  | 6.8  | 5.7  | 4.7 |
| 11  | F-O-E  | 20                 | 87.1 | 69.8 | 53.4 | 40.1 | 30.0 | 22.6      | 17.2     | 13.3        | 10.4 | 8.3  | 6.7  | 5.5  | 4.5 |
| 12  | F-O-R  | 26                 | 86.7 | 69.5 | 53.5 | 40.4 | 30.3 | 22.8      | 17.3     | 13.1        | 10.0 | 7.5  | 5.7  | 4.2  | 3.1 |
| 13  | P-G-E  | 20                 | 99.6 | 92.4 | 70.5 | 45.4 | 27.3 | 16.5      | 10.4     | 6.9         | 4.9  | 3.6  | 2.8  | 2.3  | 1.9 |
| 14  | P-G-R  | 29                 | 98.3 | 91.7 | 78.3 | 61.2 | 45.1 | 32.4      | 23.3     | 17.1        | 12.8 | 9.8  | 7.7  | 6.1  | 4.9 |
| 15  | P-C-E  | 22                 | 98.2 | 90.4 | 76.8 | 61.2 | 47.0 | 35.6      | 27.1     | 20.9        | 16.3 | 13.0 | 10.5 | 8.7  | 7.2 |
| 16  | P-C-R  | 22                 | 98.4 | 89.7 | 75.3 | 59.4 | 45.3 | 34.0      | 25.6     | 19.4        | 14.8 | 11.4 | 8.7  | 6.7  | 4.9 |
| 17  | P-O-E  | 25                 | 98.6 | 91.5 | 77.9 | 61.9 | 47.2 | 35.3      | 26.5     | 20.1        | 15.5 | 12.2 | 9.7  | 7.9  | 6.4 |
| 18  | P-O-R  | 25                 | 99.1 | 91.6 | 77.1 | 60.3 | 45.3 | 33.5      | 24.8     | 18.7        | 14.3 | 11.0 | 8.6  | 6.7  | 5.2 |





#### **Follow-Up Studies**

Development of (1) a boundary representative human model (BRHM) generation and analysis system for one-size product design and (2) a linkage with the custom-built interface of digital human model simulation systems

