

Development and Usability Testing of Dr. Liver, a User-Centered Virtual Liver Surgery Planning System

Xiaopeng Yang¹, Younggeun Choi¹, Wonsup Lee¹, Dr. Ji Hyun Kim², Dr. Hee Chul Yu², Dr. Baik Hwan Cho², and Dr. Heecheon You¹

¹Department of Industrial and Management Engineering, Pohang University of Science and Technology, South Korea

²Department of Surgery, Chonbuk National University Medical School, South Korea

Global Contributor to Eco-Techno-Humanopia

Members

Heechon You

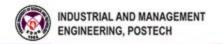
Xiaopeng Yang

Younggeun Choi

Wonsup Lee

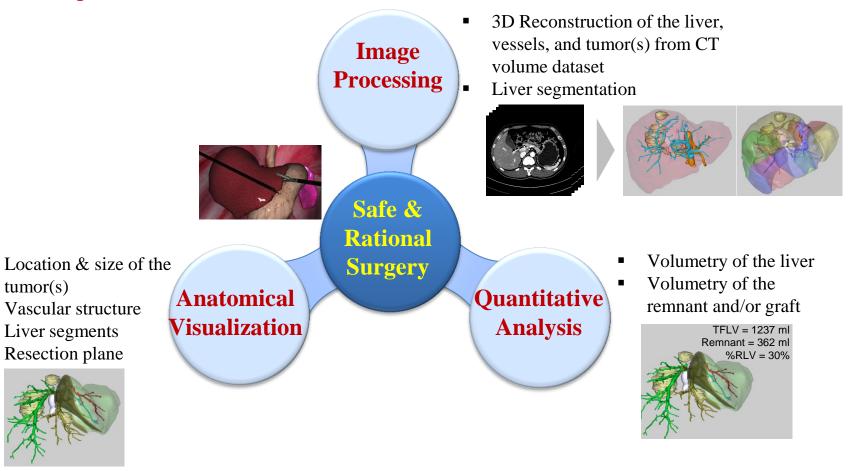
Biakhwan Cho

Heechul Yu

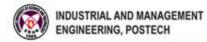


Contents

Introduction

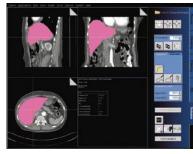

- Background
- Objectives of the Study
- Virtual Liver Surgery Planning System Development
- Usability Testing
- Discussion

Virtual Liver Surgery Planning System?

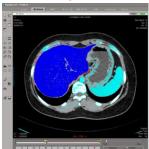

 A system which assists surgeons in preoperative planning for liver resection and transplantation

Generic Virtual Surgery Systems

	Rapidia (Infinitt)	Voxar 3D (Barco ⇒ Toshiba)	Syngo.via (Simense)	OsiriX (Freeware - Pixmeo)
System				
Country	Korea	Japan	Germany	Swiss
System features	 3D visualization Measurement Options ✓ Colon & polyps ✓ Cardiac Ca ✓ Vessel ✓ Brain angio 	 3D visualization Measurement Options ✓ Colon ✓ Cardiac Ca ✓ Vessel 	 Oncology ✓ PET & CT segmentation (extraction) ✓ CT Lung CAD ✓ Colonography Cardiology ✓ Vascular ✓ Cardiac ✓ Cardiac ✓ Ca Scoring Neurology ✓ PET evaluation ✓ Perfusion CT 	 3D visualization Measurement Options ✓ Custom plugins ✓ iPhone, iPad compatible

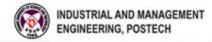


Generic Virtual Surgery Systems: Limitations

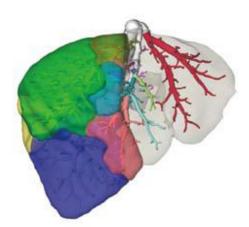

- Lack of functions specialized for liver surgery planning, such as liver segmentation and surgical resection simulation
- Liver extraction
 - Manual drawing
 - Liver contour manually traced slice by slice
 - Time demanding: more than 30 min for a CT dataset of 200 slices with a thickness of 1 mm
 - Semi-automatic
 - Simple region growing method provided
 - Heavy manual editing required due to false extraction
 - \Rightarrow Cumbersome to users

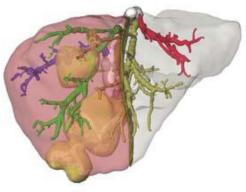
Syngo.via

Rapidia


OsiriX

Specialized Virtual Liver Surgery Planning Systems


Sustom	MeVis Distant Service (MeVis)	Synapse Vincent (Fujifilm)	IQQA Liver (EDDA)	Mint Liver (Mint Medical & German Cancer Research Center)
System				
Country	Germany	Japan	USA China	Germany
System features	 Segmentation of the liver, veins, biliary system, and tumors Volumetric data for both remnant and/or graft Vascular territory evaluation Virtual resection options 	 Liver extraction Vessel analysis Segmentation Volumetry Surgery planning 	 Segmentation of the liver, lobes, vessels, and lesion Volumetry Calculation of 3D distances, margins, and diameters Virtual knife control 	 Integration in the existing software platform Automatic liver analysis ✓ Visualization ✓ Volumetry Definition of resection strategies



MeVis Distant Services

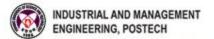
- Provided by MeVis Medical Solutions AG, Germany
- LiverAnalyzer & LiverViewer developed using MeVisLab
- Analysis services
 - Segmentation of the liver, veins, biliary system, and tumors
 - Volumetric data for both remnant and/or graft
 - Vascular territory evaluation
 - Virtual resection options

Limitation:

 LiverAnalyzer not for sale

Surgery Planning – Oncological Case

Liver analysis report (viewed by LiverViewer)


MeVis DISTANT BERVICES	This report is for demonstration purposes only!				
	Anatomy	Risk Analysis	Resection Proposals		
		Y Cut1, Extended	Right Hemihepatectomy ➤ Cut2, Lo	ocal Resection	
Patient: Demo_Tumor D: XYZ123					
		0			
	(Liph	4			
	A Start	a by	2-	+	
	YXY				
	1 PA	9			
	J.P			í	
				X	

Last selected object group: Cut1, Extended Right Hemihepatectomy, PV and HA (of Cut1, Extended Right Hemihepatectomy).

Limitation:

 Difficult to crosscheck the accuracy of the analysis results since CT images are not provided

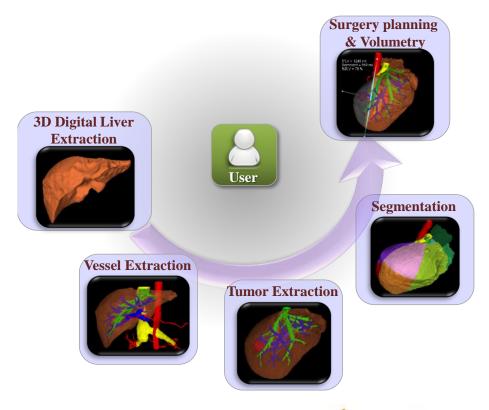
Synapse Vincent

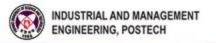
- Developed by Fujifilm, Japan
- Functions provided
 - Liver extraction
 - Vessel analysis
 - Liver segmentation
 - Volumetry
 - Surgery planning

Limitations:

- Expensive
- More user-friendly UI needed
- Manual drawing of vessels required
 - \Rightarrow Cumbersome to users

SYNAPSE VINCENT

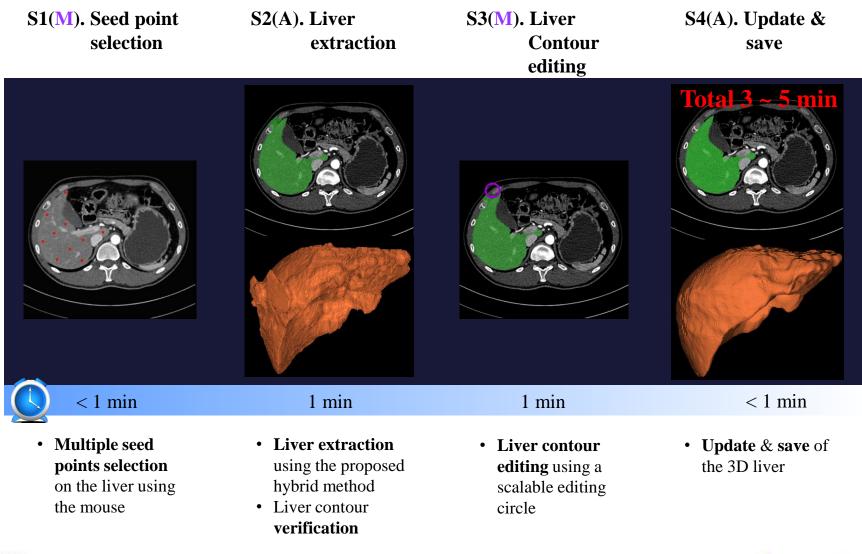



Research Objectives

Development and Usability Testing of Dr. Liver, a User-Centered Virtual Liver Surgery Planning System

- 1. Functions specialized to liver surgery
- 2. Decision support information
- 3. Intuitive, user-friendly interface
- 4. Acceptable processing time

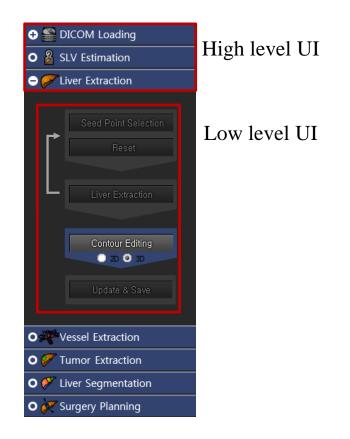
Use Scenario Development

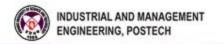

- A use scenario consisting of hierarchical tasks was developed based on
 - Interviews with surgeons
 - Benchmarking of commercialized systems
 - Literature survey
 - Questionnaires

Liver extraction	Vessel extraction	Tumor diagnosis	Liver segmentation	Surgery planning
3 ~ 5 min	8 ~ 10 min	3 ~ 4 min	7 ~ 10 min	2 ~ 3 min
S1. Seed point selection	S1. Mask the liver	S1. Seed point selection	S1. Segmentation plane	S1. File loading
S2. Liver extraction	S2. Seed point selection	S2. Tumor extraction	generation	S2. Resection of tumor
S3. Liver editing	S3. Vessel extraction	S3. Tumor Editing	S2. Liver segment	by a sphere
S4. Update & save	S4. Vessel editing	S4. Update & save	adjustment	S3. Volumetry
	S5. Update & save			

Entire processing time: $20 \sim 30 \text{ min}$

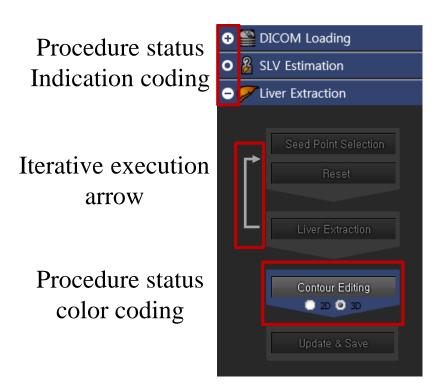
Use Scenario: Liver Extraction Module

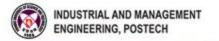




User-Friendly UI Features (1/4)

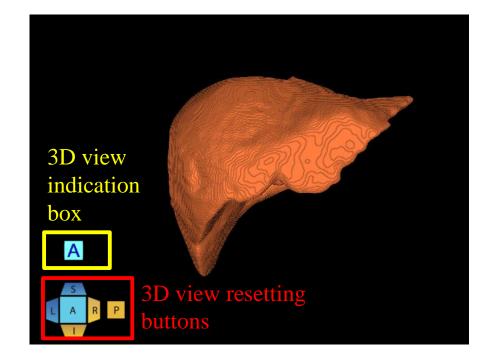
 A hierarchical and sequential user interface was designed based on the use scenario

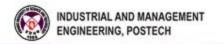




User-Friendly UI Features (2/4)

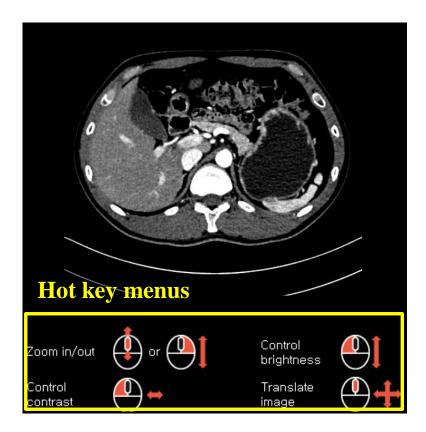
- Procedure status indication and color coding
- Iterative execution arrow

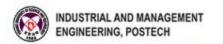




User-Friendly UI Features (3/4)

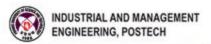
• 3D view indication and resetting functions for easier 3D object manipulation

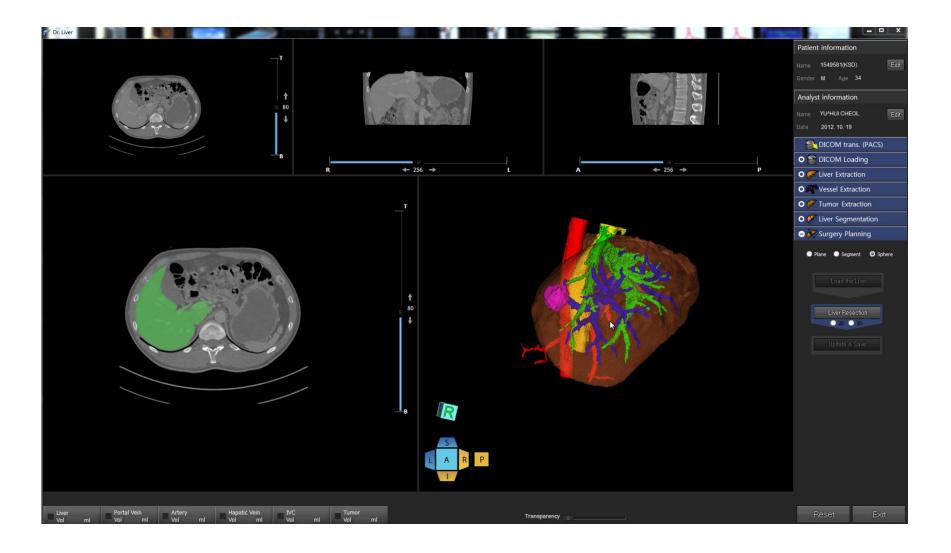


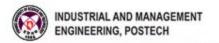


User-Friendly UI Features (4/4)

 Hot key menus on the 2D screen for easier accomplishment of various tasks such as seed point selection and CT image zooming in/out



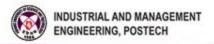

Demo: Liver Extraction Module



Demo: Liver Surgery Planning – Sphere Mode

Usability Testing

- Participants
 - 3 medical doctors at Chonbuk National University Medical School
 - Age: $30 \sim 50$ years
- Patient dataset
 - One dataset of abdominal CT images provided by Chonbuk National University Medical School, South Korea
 - Resolution: 512×512
 - Thickness: 1 mm


Test Design

1. Informed consent 1. Pre-Test Session 2. Introduction of usability testing (1 h) 3. Training of Dr. Liver Liver extraction Vessel extraction Portal vein • Hepatic artery Hepatic vein IVC **Test Session** 2. Tumor extraction Liver segmentation (1.5 h)Plane • Sphere Liver surgery planning Plane • Segment Sphere Debriefing 3. Post-Test Session (10 min) NDUSTRIAL AND MANAGEMENT 21 Ergonomic Design ENGINEERING, POSTECH **Technology Lab**

Measure/Instrument Matrix (selected)

Measures		Liver Extraction	Vessel Extraction	Surgery Planning	Instrument/ Scale
D	Accuracy (Similarity index, False positive error, and false negative error)	O			Comparison to golden standard
Performance	Completion Time	О	o	0	Programming
	Number of mouse clicks	О	О	0	Programming
	Number of keystrokes	Ο	0	O	Programming
	Usefulness	Ο	O /	O	Questionnaire
	Ease of Use	Ο	• • •	0	with 7-point
	Learnability	О	O	0	Likert Scales
Preference	Informativeness	О	O	0	
	Clarity	О	•	0	
	Tolerance	О	O	0	
	Satisfaction	Ο	0	o	

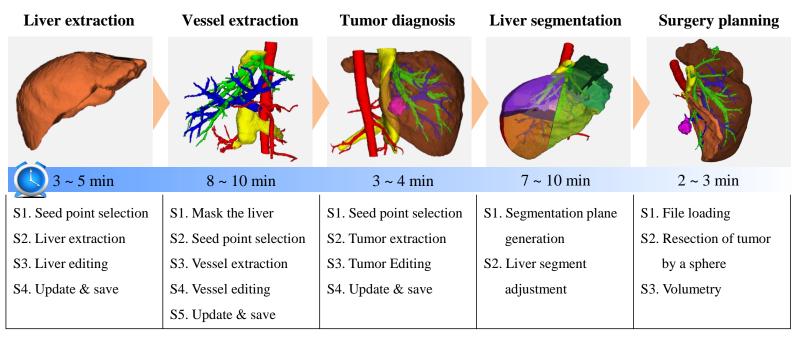
Assessment Questions: Liver Extraction (illustrated)

Questions	Very Poor	Poor	Slightly Poor	Fair	Slightly Good	Good	Very Good
How useful is it for extracting the liver from DICOM images?	1)	2	3	4	5	6	\bigcirc
How easy is it to use ?	1	2	3	4	5	6	\bigcirc
How easy is it to learn the steps of liver extraction?		2	3	4	5	6	\bigcirc
How adequate is the information provided?	1	2	3	4	5	6	Ø
How clear are the step names?	1	2	3	4	5	6	Ø
How adequate is the tolerance to allow you make mistakes?	1	2	3	4	5	6	Ø

Quantitative Assessment Results (selected)

Measures		Liver	Vessel	Surgery
		Extraction	Extraction	Planning
	SI (%)	97.0 (0.3) 🕲	_	_
Accuracy	FPE (%)	2.0 (0.2) 🕲	-	_
	FNE (%)	$ \begin{array}{c} 2.3 \\ (0.4) \end{array} $	-	-
Time (min)	Interaction	$\begin{array}{c} 1.8\\(0.5)\end{array} \textcircled{\textcircled{\black}{\odot}}$	$\begin{array}{c} 0.6\\(0.1)\end{array} \textcircled{\textcircled{\black}{\odot}}$	1.0 (0.2) 🕲
	Auto processing	$ \begin{array}{c} 1.3 \\ (0.2) \end{array} $	$\begin{array}{c} 1.6\\(0.3)\end{array} \textcircled{\textcircled{\black}{2}}$	1.2 (0.4) ⁽¹⁾
Number of mouse clicks	Before editing	30 (8) 🕲	20 (5) ③	10 (7) ⁽²⁾
	Editing	56 (10). 😄	0 (0) 🕲	4 (2) ⁽²⁾
Number of keystrokes	Before editing	$\begin{array}{c} 0\\ (0) \end{array}$	$\begin{array}{c} 6\\ (4) \end{array} \textcircled{\textcircled{\black}{3}}$	9 (3) ⁽³⁾
	Editing	17 (10) 😂	$\begin{array}{c} 0\\ (0) \end{array} \bigcirc$	3 (2) es

Qualitative Assessment Results - Overall

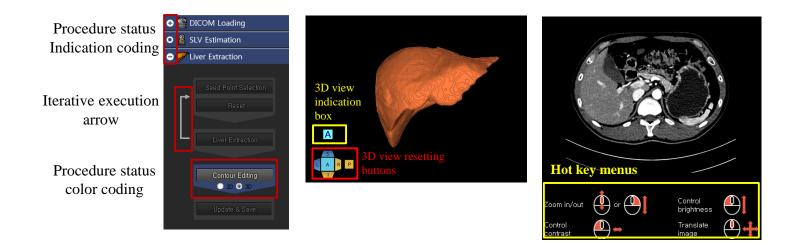

Mod	lule	Average	S.D.	
Liver extraction		6.7	0.6	
	Portal vein	6.8	0.4	
X 7 1 , , , ,	Hepatic artery	5.2	0.8	Low score: Incomplete
Vessel extraction	Hepatic vein	6.7	0.5	extraction of HA
	IVC	7.0	0.0	
Tumor extraction		7.0	0.0	
Liver	Plane	6.7	0.6	
segmentation	Sphere	6.5	0.5	 Large variation: high scores provided by young doctors, but
	Plane	6.1	1.1	
Liver surgery planning	Segment	7.0	0.2	
praiming	Sphere	7.0	0.2	a low score by a senior doctor
STRIAL AND MANAGEMENT	1	25		Ergonomic Design

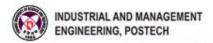
Technology Lab

Discussion (1/3)

- Use scenario development based on interviews with surgeons, benchmarking of commercialized systems, literature survey, and questionnaires
 - User-centered
 - Clinically practical

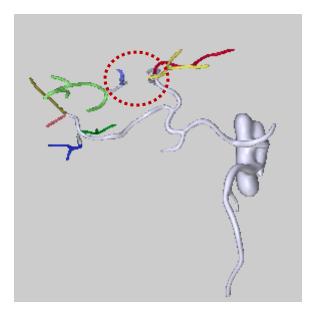
Entire processing time: $20 \sim 30 \text{ min}$

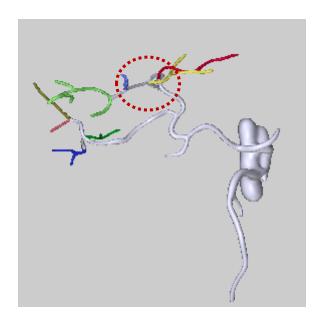


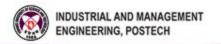


Discussion (2/3)

- User-friendly UI design
 - Procedure-based and intuitive
 - Procedure status indication and color coding
 - 3D view indication box and resetting buttons for easier 3D object manipulation
 - Hot key menus on the screen to decrease cognitive workload







Discussion (3/3)

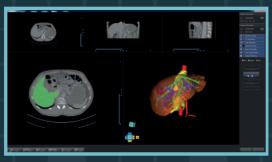
- Usability testing
 - Improvement needed: Connection function for discontinued extraction of HA branches
 - Usability testing at multiple centers

Liver Anatomy Workshop @ POSTECH

FEATURES

Clinical Decision Support for Safe and Rational Surgery

- Semi-automated extraction of the liver, vessels (PV, HV, HA, and IVC), and lesions
- Real-time, interactive boundary editing
- Customized liver segmentation based on PV and HV structures
- Volumetry of the liver, vessels, lesions, and liver segments
- Optimal surgery planning support based on risk analysis and resection strategies


2 User-Friendly Interface

- Procedure-based and hierarchical workflow
- Easy to learn and use
- Multi-modal (text, graphic, and voice) guidance

3 Time Efficiency in Surgery Planning

 Efficient workflows (20 min from liver extraction to surgery planning)

System Overview

System Requirement

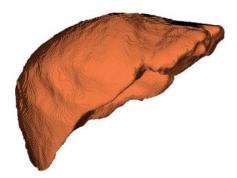
	OS	Windows 7 64 bit or higher
	HDD	2 GB or larger
PC	CPU	i5 3.1 GHz or higher
	RAM	8 GB or larger
	VGA	GeForce GT 630 or higher
Monitor	Resolution	1920 × 1080 or higher

Retailer Information

Distributor: Humanopia Co., Ltd. Address: 323 Main Building, Pohang Techno Park 394 Jigok-ro, Nam-gu Pohang, Gyungbuk, 790-834, South Korea Tel: +82-54-223-2268~9 E-mail: eurinam@hotmail.com Webpage: www.humanopia.co.kr Dr. Liver is a virtual liver surgery planning system to help surgeons plan liver surgery with high accuracy and ease of use in a reasonable time.

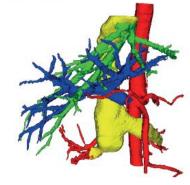
Dr. Liver pursues excellence in functionality for clinical decision support for safe and rational surgery and user-friendly interface.

The User-Friendly Virtual Liver Surgery Planning System

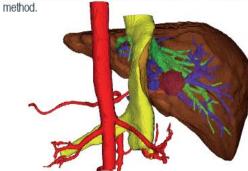

SLV Estimation

The standard liver volume of a patient can be estimated based on the height and weight of the patient using three formulas (Yu et al., 2004; Urata et al., 1995; and Heinemann et al., 1999)

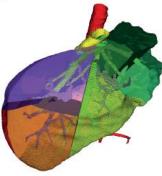
🛨 🔏 SLV Estimat	🔒 SLV Estimation					
Height 175.0 Weight 70.0	🗘 cm Cal,					
Yu et al.	1546.8 ml					
Urata et al.	1307.6 ml					
Hienemann et al.	1637.0 ml					


2 Liver Extraction

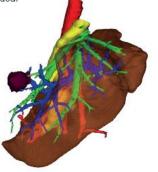
The liver can be automatically extracted in $2 \sim 4$ min using a sophisticated algorithm (termed as hybrid liver extraction method) once multiple seed points are selected on $5 \sim 6$ slices by the user.


3 Vessel Extraction

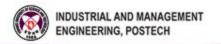
The PV, HA, HV, and IVC can be extracted in 2 min each using modified region growing methods, which use multiple seed points, masked CT images, and an optimal threshold interval identified by the K-means clustering method.


4 Tumor Extraction

The tumor(s) can be extracted in 2 min by a threshold-based levelset method, which uses multiple seed points and an optimal initial threshold interval automatically identified by the K-Means clustering

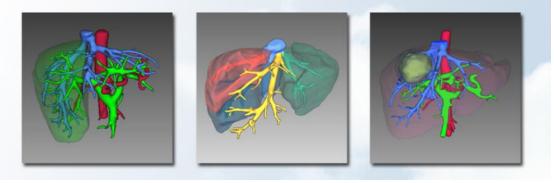

5 Liver Segmentation

The liver can be divided into segments in 1 \sim 3 min per segmentation according to Couinaud's classification method based on the PV and HV structures. Two modes (plane and sphere) are available for segmentation.


6 Liver Surgery Planning

The resected area of the liver can be defined using one of three different modes (plane, segment, and sphere). The volumes of the liver and remnant/graft and the percentage of the remnant liver volume are provided.

Thank you for your attention!


IQQA Liver

Developed by EDDA, USA

IQQA-Liver is the latest innovation addressing multi-departmental needs in treatment planning for liver surgery, transplantation and interventional procedures. Our system allows you to achieve:

- Automated 3D Analysis
- Volume Measurements
- Virtual Simulation
- 3D Spatial Relationship
- And more

Limitations:

- Expensive and no specifications of the system provided
- No usability testing of the system provided
- \Rightarrow Not available for evaluation and close comparison

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

