
Analysis of Visual Sensibility Evaluation of Naturally Colored Organic Cotton (NaCOC)

Yoon Chang¹, Jangwoon Park¹, Wongi Hong¹, Heecheon You¹ Ahreum Han², Youngjoo Chae², and Gilsoo Cho²

- ¹ Department of Industrial & Management Engineering, POSTECH
- ² Department of Clothing & Textiles, Yonsei University

Agenda

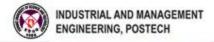
- Introduction
 - Background
 - Objectives
- Visual Sensibility Evaluation
- Results
- Conclusion

Naturally Colored Organic Cotton?

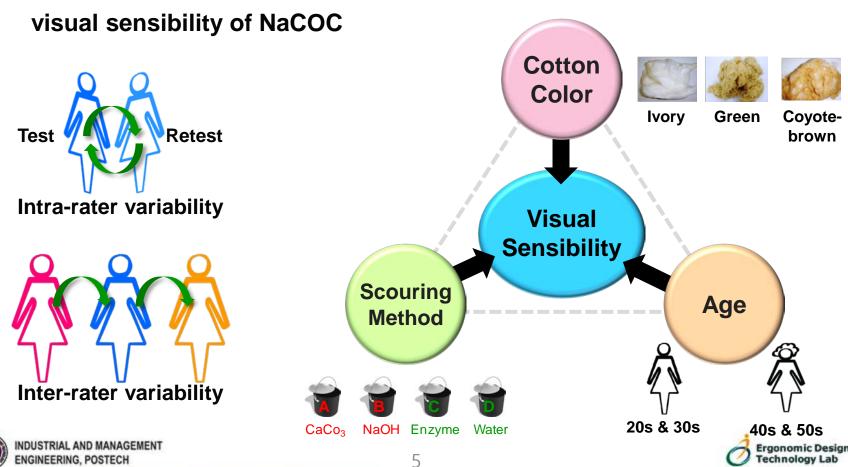
- A naturally pigmented fiber that grows in shades of ivory, green, or brown without artificial dyes
- Interests in NaCOC have increased rapidly with the social trend of wellbeing and eco-friendly living

Scouring Treatment Process

- The purposes of the scouring treatment (Tzanko et al., 2001)
 - Remove contaminants in the cotton
 - Improve fabric absorbency
 - ⇒ Changes in the physico-mechanical properties (e.g., tensile strength & thickness) of fabrics including color

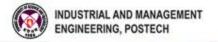

(1) untreated fibers

(2) scouring treatment


(3) treated fibers

Objectives of the Study

- Identify the intra- and inter-rater reliabilities of a visual sensibility evaluation method
- Identify the effects of age, NaCOC color, and scouring method on the

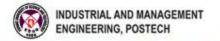


echnology Lab

Participants

■ Health condition: No color blindness

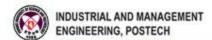
Attributes		Age Groups			
		20s & 30s	40s & 50s		
# of participants		30	30		
	Mean	25.8	49.3		
Age	S.D.	3.3	5.7		
	Range	21 ~ 34	41 ~ 58		



Apparatus

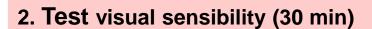
9 pairs of bipolar visual sensibility adjectives (Lee & Nam, 2003; Woo
 & Cho, 2003)

No	-	Very	Moderately	Slightly	Neutral	Slightly	Moderately	Very	+
1	Dark	-3	-2	-1	0	1	2	3	Bright
2	Murky	-3	-2	-1	0	1	2	3	Clear
3	Light	-3	-2	-1	0	1	2	3	Heavy
4	Subdued	-3	-2	-1	0	1	2	3	Vivid
5	Cool	-3	-2	-1	0	1	2	3	Warm
6	Stale	-3	-2	-1	0	1	2	3	Fresh
7	Weak	-3	-2	-1	0	1	2	3	Strong
8	Plain	-3	-2	-1	0	1	2	3	Showy
9	Cheap	-3	-2	-1	0	1	2	3	Luxurious

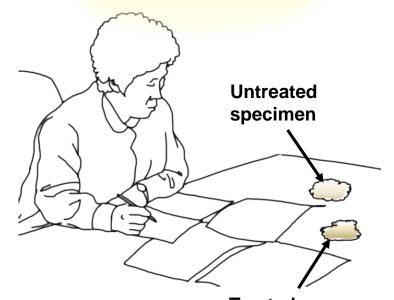


Cotton Specimens

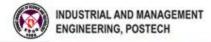
□ 3 color sets of NaCOC specimens including 1 untreated and 4 treated specimens


		Chemical	l process	Natural	process
Scouring method	N	A: CaCO ₃	B: NaOH	C: Enzyme	D: Water
Color	Untreated	0.5g/L sodium carbonate & 1 g/L Tween 80	0.5g/L sodium hydroxide & 1 g/L Tween 80	100 g/L Pectinase , 50 g/L Cellulase, & 0.05M acetate buffer solution of PH 5.0	Boiling water
lvory					
Green			Control of the second s		
Coyote- brown					

Experimental Procedure

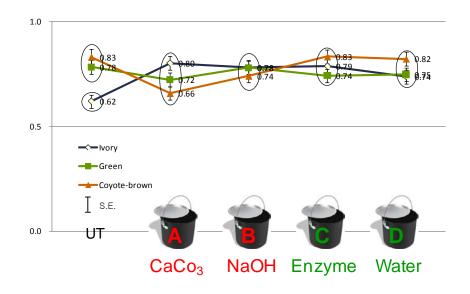

- ☐ Conducted the visual sensibility evaluation by the test-retest method
- Counterbalanced the evaluation order of color sets
- ☐ Presented the untreated specimen first followed by the treated ones in random order
 - 1. Orientation of the experiment (5 min)

3. Break (5 min)

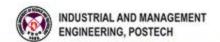

4. Retest visual sensibility (30 min)

Lighting condition: 400 lux

Treated specimens



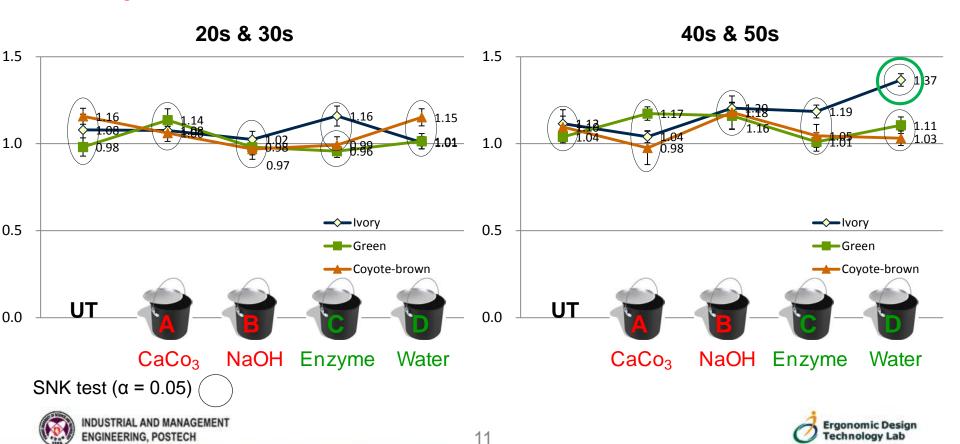
Intra-Rater Reliability


- ☐ Four-factor mixed ANOVA (age, color, scouring method, and sensibility adjective)
- ☐ Only "color × scouring method" significant
- Average intra-rater SD: 0.62 ~ 0.83, showing no systematic pattern

Source	df	SS	MS	$\boldsymbol{\mathit{F}}$
Age (A)	1	5.55	5.55	1.01
Subject (S) [A]	58	318.41	5.49	
Color (C)	2	1.41	0.71	0.31
$A \times C$	2	3.33	1.66	0.73
$S[A] \times C$	116	264.91	2.28	
Scouring method (M)	4	3.54	0.89	1.07
$A \times M$	4	3.12	0.78	0.94
$S[A] \times M$	232	192.41	0.83	
Sensibility adjective (SA)	8	5.83	0.73	1.19
$A \times SA$	8	10.96	1.37	2.24
$S[A] \times SA$	464	284.18	0.61	
$C \times M$	8	22.58	2.82	2.57
$S[A] \times C \times M$	472	518.38	1.10	
$C \times SA$	16	9.17	0.57	1.07
$S[A] \times C \times SA$	944	505.26	0.54	
$M \times SA$	32	20.93	0.65	1.50
$S[A] \times M \times SA$	1888	825.19	0.44	
Error	3840	1692.33	0.44	
Total	8099	4687.49		

: grouped by SNK test at $\alpha = 0.05$

Significant results at $\alpha = 0.05$



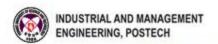
Inter-Rater Reliability

- Four-factor mixed ANOVA (age, color, scouring method, and sensibility adjective)
- \square Age \times color \times scouring method (F(8, 64) = 3.41, p = 0.003)
- Average inter-rater SD: 0.97 ~ 1.37, showing no systematic pattern

Average intra-rater SD: 0.62 ~ 0.83

echnology Lab

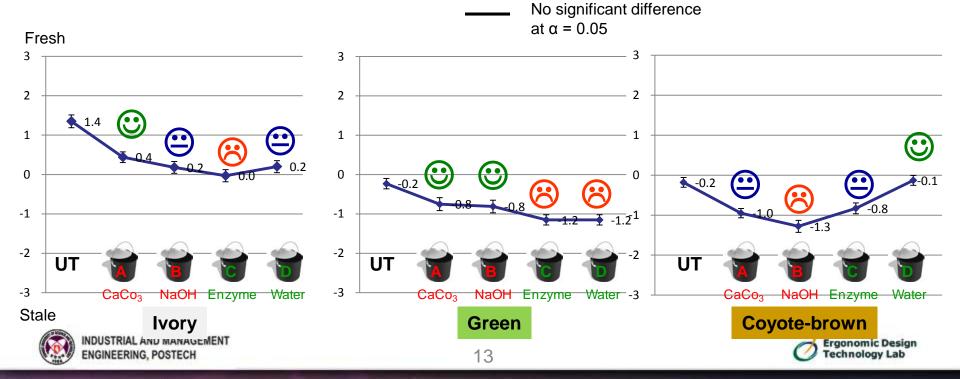
ANOVA for Sensibility Evaluation Data (p values)

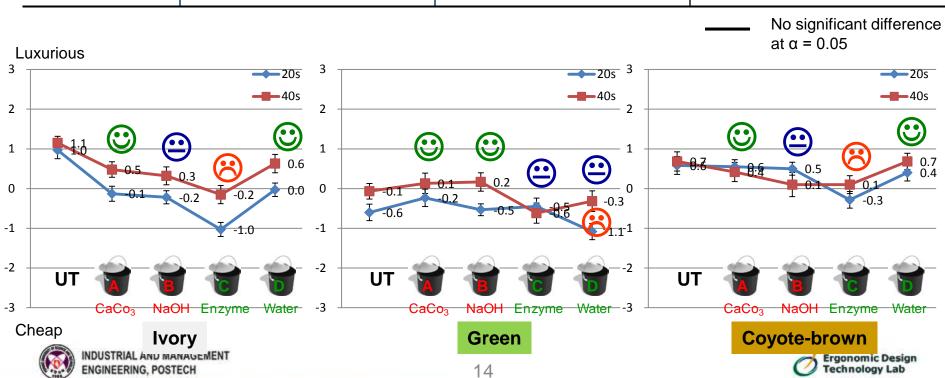

☐ Three-factor mixed ANOVA (age, color, and scouring method)

Significant results at $\alpha = 0.05$

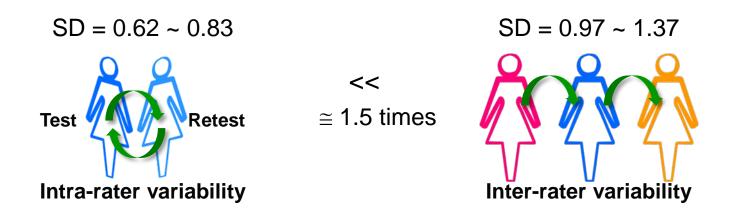
2-way interaction

3-way interaction


Sensibility	adjective	Age (A)	Color (C)	Scouring method (M)	A × C	A×M	C×M	A × C ×
Bright	Dark	0.0029	< 0.0001	< 0.0001	0.0052	0.0028	< 0.0001	0.0003
Clear	Murky	0.2067	<0.0 <mark>001 N</mark>	aCOC Co	or _{0.0003}	0.1111	< 0.0001	0.0214
Heavy	Light	0.0017	¢0.0 <mark>001</mark>	< Age	0.1197	0.0398	<0.0001	0.0166
Vivid	Subdued	0.0076	<0.0001	<0.0001	0.4629	0.5204	0.0150	0.2871
Warm	Cool	0.0006	<0.0001 N	aCOC Co	or 0.5208	0.0587	0.0001	0.0052
Fresh	Stale	0.4315	<0.0001	<0.0001	0.4943	0.1558	0.0004	0.2788
Strong	Weak	0.0005	<0.0001	<0.0001	0.0796	0.2005	0.0309	0.0024
Showy	Plain	0.1084	0.0006	0.0267	0.0535	0.2549	< 0.0001	<0.0001
Luxurious	Cheap	0.0029	<0.0001	<0.0001	0.0052	0.0028	< 0.0001	0.0003


Multiple Comparison for C × M: Fresh-Stale

Color	Age		
Color	Pooled		
Ivory	C (0.0), B (0.2), D (0.2), A (0.4)		
Green	C (-1.2), D (-1.2), B (-0.8), A (-0.8)		
Coyote-brown	B (-1.3), A (-1.0), C (-0.8), D (-0.1)		

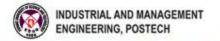

Multiple Comparison for A × C × M: Luxurious-Cheap

Color	Age						
Color	20s & 30s	40s & 50s	Pooled				
Ivory	C (-1.0), B (-0.2), A (-0.1), D (0.0)	C (-0.2), B (0.3), A (0.5), D (0.7)	C (-0.6), B (0.1), A (0.2), D (0.4)				
Green	D(-1.1), C (-0.5), B (-0.5), A (-0.2)	C (-0.6), D (-0.3), A (0.1), B (0.2)	D (-0.7), C (-0.6), B (-0.2), A (-0.1)				
Coyote-brown	C (-0.3), D (0.4), B (0.5), A (0.6)	C (0.1), B (0.1), A (0.4), D (0.6)	C (-0.1), B(0.3), A (0.5), D (0.5)				

Conclusion: Reliability Evaluation

Intra-rater vs. inter-rater reliabilities

 Both the intra-rater and inter-rater reliabilities of sensibility evaluation did NOT show any systematic pattern of changes (age, NaCOC color, scouring method, and sensibility adjective pair)



Conclusion: Visual Sensibility Evaluation

 Preferred scouring methods for the visual sensibility adjective pairs significantly vary depending on NaCOC color (major) and age (minor)

NaCOC Color	NaCOC Color & Age
Vivid – Subdued Fresh – Stale	Bright – Dark Clear – Murky Heavy – Light Warm – Cool Strong – Weak Showy – Plain Luxurious – Cheap

 An environmentally friendly scouring method such as water can be as effective as chemical methods such as CaCO₃ and NaOH

Thank You for Your Attention!

