

Development of the Boundary Zone Method for Generation of Representative Human Models

Kihyo Jung¹, Ochae Kwon², and Heecheon You¹

¹Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH) ²Mobile Communication Division, Samsung Electronics Co.

Global Contributor to Eco-Techno-Humanopia

- □ Background: Representative Human Models
- □ Objectives of the Study
- □ Development of Boundary Zone (BZ) Method
- **Comparison of BZ Method and Existing Methods**
- Discussion

Representative Human Models (RHMs)

- A small group of humanoids representing a designated percentage (e.g., 90%)
 of the target population for product design based on anthropometric data (HFES 300, 2004)
- Benefits of RHMs in anthropometric design (HFES 300, 2004; Jung et al., 2008)
 - Efficient ergonomic design and evaluation
 - Good fit between products and the target users

Percentile RHM-Generation Method

- □ Determine the sizes of RHMs as percentile values of each anthropometric dimension (HFES 300, 2004) ⇐ univariate approach
- Guarantee univariate accommodation, but not multivariate accommodation (Meindl et al., 1993; HFES 300, 2004)

⇒ Multivariate accommodation percentage is decreasing as the number of anthropometric dimensions increases.

Multivariate RHM-Generation Methods

Use data reduction techniques such as factor analysis and principal component analysis (Bittner et al., 1987; Kim and Whang, 1997; Meindl et al., 1993)

 AD_i = anthropometric dimension *i* F_i = factor *j*

 $\mathbf{n} =$ number of anthropometric dimensions

Classification of Existing Multivariate Methods

Classified by the shape of accommodation boundary

Limitations of Existing Multivariate Methods

- Multivariate accommodation be less than the target percentage due to use of data reduction techniques (Meunier, 1998).
 - 1 Loss of anthropometric variability (e.g., 20%)
 - 2 Estimation error of body sizes using factor scores
 - ③ Missing zones along the accommodation boundary

⇒ Since these limitations decrease multivariate accommodation performance, a new multivariate RHM-generation method needs to be developed.

Objectives of the Study

1 Develop a new multivariate RHM-generation method

- Overcoming the limitations of existing methods
 - ✓ Loss of anthropometric variability
 - ✓ Estimation error
 - ✓ Missing zone
- Statistically accommodating a designated percentage

2 Compare the new method with existing methods

- Using the 1988 US Army data
- Considering various numbers and combinations of anthropometric dimensions

Development of Boundary Zone (BZ) Method

Proposed a two-step RHM-generation method which generates RHMs at a BZ statistically accommodating a designated percentage of the population.

1. Formation of a BZ

- Calculating **normalized squared distances** (D) of each anthropometric case.
- Forming a **BZ** which statistically accommodates a designated percentage using D.

2. Cluster analysis for the cases within the BZ

- Clustering anthropometric cases in the BZ by the **K-means cluster algorithm**.
- Selecting a **case nearest to the centroid** of each cluster for RHM.

Step 1: Formation of a BZ

Identify a boundary of a designated accommodation percentage using normalized squared distances (D) of each anthropometric case based normality assumption of anthropometric sizes.

$$D = (AD - \mu)^T \Sigma^{-1} (AD - \mu) \le \chi_n^2 (1 - p)$$

where: D = normalized squared distance AD = values of anthropometric dimensions n = number of anthropometric dimensions p = target accommodation percentage $\chi_n^2(1-p)$ = Chi-squared value for n degree of freedom and (1-p) percent μ = averages of the values of anthropometric dimensions \sum = variance-covariance matrix of anthropometric dimensions

Formation of a BZ (cont'd)

➡ Form a BZ by two boundaries that accommodates a designated percentage ± a tolerance percentage (e.g., 90% ± 1%).

Step 2: Cluster Analysis within the BZ

- Apply the K-means cluster analysis to the cases within the BZ due to some cases have similar body sizes.
- Select one case per cluster which is nearest to the centroid in Euclidian distance.

Cases in the BZ and clusters

Optimal Number of Clusters

Determine an optimal number of clusters by analyzing multivariate accommodation percentage (MAP) as the number of clusters increases.

Evaluation Method

- Source: The 1988 US Army data (Gordon et al., 1988)
- Sample size (n): 3,987 (female = 2,213; male = 1,774)
- **Random partition for cross-validation**
 - Learning set (n = 2,982) for RHM generation
 - Testing set (n = 1,000) for evaluation

Anthropometric Dimension Sets

Randomly selected anthropometric dimension sets

- Number of anthropometric dimensions: 4 levels (n = 5, 10, 15, and 20)
- Combination for each number level: 5
- \Rightarrow Sets of anthropometric dimensions were randomly selected from the 1988 US Army data.
- Design-related dimension set: ten anthropometric dimensions for computer workstation design used in ANSI/HFES (2007)

Body parts	Anthropometric dimensions	Code		
Trunk	Abdominal extension depth			
Arm	Elbow rest height	AD2		
	Forearm-to-forearm breadth	AD3		
Upper leg	Buttock-knee length	AD4		
	Hip breadth	AD5		
	Thigh clearance	AD6		
Lower leg	Buttock-popliteal length	AD7		
	Popliteal height	AD8		
	Knee height	AD9		
Foot	Foot length AI			
ANAGEMENT	15			

Performance Measures

□ Quantified the performances of RHM-generation methods in three aspects.

No.	Criteria	Explanation		
1	Multivariate accommodation percentage (MAP)	Proportion of the target population which accommodated by the generated RHMs. Quantified by referring to previous studies (HFES 300, 2004; Hudson et al., 2006) Univariate 1 st dimension accommodated not accommodated $ \begin{array}{c} 2^{nd} dimension \\ & & \\ & & \\ $		
2	Outlier	Whether sizes of RHMs are larger or smaller than the size ranges of the target population		
3	Number of RHMs	Applicability of RHMs to ergonomic design and evaluation in a digital human simulation system		

Results: MAP

 \blacksquare MAP of the BZ method was close to the target percentage (90%).

- BZ method: 91% (SD = 0.6%)
- Square method: 49% (2.5%) > < 90%
- Circular method: 76% (7.3%) $\int (t (20) = -23.0, p < 0.001; t (20) = -8.6, p < 0.001)$
- Rectangular method: 96% (8.2%) > 90% (t(20) = 9.8, p < 0.001)

Effect of Factor Loadings on Body Size Diversity

□ Lack of body size diversity for pairs of anthropometric dimensions having similar factor loadings in the existing methods.

Number of RHMs

■ Numbers of RHMs for the BZ method was significantly larger.

- BZ method: 48 (SD = 29)
- Square and rectangular methods: 14 (8) (t (22) = -5, p < 0.001)
- Circular method: 29 (14) (t (22) = -2.6, p = 0.02)

Multivariate generation methods

Outliers in the Rectangular Method

Generated RHMs out of the size ranges of the target population.

Summary

□ The BZ method is superior to the existing methods in representativeness.

Classification	Square method	Rectangular method	Circular method	BZ method
Bivariate plot*	76 (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	Provide the second seco	To the second se	75 70 10 10 10 10 10 10 10 10 10 10 10 10 10
# RHMs (SD)	14 (8) 🙂	14 (8)	29 (14)	48 (29) 😕
MAP (SD)	49% (2.5%) 😕	96% (8.2%) 😀	76% (7.3%) 😕	91% (0.6%) 🙂
Outlier	No 😊	Yes 😕	No 🙂	No 🙂
Size diversity**	No 😣	No 😣	No 😕	Yes 🙂

* Red dot: RHM, blue dot = not accommodated, green dot = accommodated

** Size diversity for pairs of anthropometric dimensions

Discussion

- Developed an effective RHM-generation method
 - Formation of a BZ using normalized squared distance
 - K-mean cluster analysis for cases within the BZ
 - Selection of one case nearest to the centroid of each cluster for RHM
- Compared the BZ method with the existing methods
 - Proposed performance metrics for evaluation of RHM-generation methods
 - Comprehensive evaluation for various conditions of anthropometric dimensions (n = 5, 10, 15, and 20)
 - \Rightarrow Evaluation results can be used for understanding the performance characteristics of multivariate RHM-generation methods.
- Identified the limited applications of the existing methods
 - Under- or over-fitting than a designated accommodation percentage
 - Careful use of the existing methods if highly correlated anthropometric dimensions are considered

Limitation of the BZ Method

- Limited application of the BZ method to digital human modeling systems due to large number of RHMs
 - Creating humanoids by inputting their sizes
 - Positioning the humanoids
 - Manipulating postures of the humanoids
 - ⇒ An ergonomic design supporting system has been in development which can analyze an optimal design based on functional relationships between anthropometric dimensions and design variables

Time and efforts ↑ as # of RHMs ↑

607 A	nthropometric Design	Optimizer			
File	Representative humanoid	Product design module	Anthropometric database	Help	
		Computer workstation			
		Helicopier cockpit			
0	1				
wmik	1				
0					
fly					
0					
study					
O					
plan					
۲	}				
pan					
۲					
turn					
0	Sector Sector				
roll					
	A second second				
	a second second				
	A second second				
	A Constant				
(goto	align	view 🚯	restore	fit 🙆
				0	<u> </u>

Thank you for your attention...

