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The present study developed a generation method of representative human models (RHMs) at a boundary 
zone which statistically accommodates a designated percentage of the target population. The boundary 
zone method proposed in the study consists of (1) identification of a boundary zone and (2) cluster analysis 
on cases within the identified boundary zone. The boundary zone of a designated accommodation 
percentage was formed by the normalized squared distance of each anthropometric case from the centroid 
of the target population. Cluster analysis was used to group homogenous cases within the boundary zone to 
reduce the number of the cases. A comprehensive evaluation under various combinations of anthropometric 
dimensions revealed that the average of multivariate accommodation percentages of the boundary zone 
method (91%) closer to the designated percentage (90%) than those of the existing generation methods 
(square method = 49%, circular method = 76%, and rectangular method = 96%). 
 
 

INTRODUCTION 
 

A small group of human models representing the target 
population is used for the ergonomic design and evaluation of 
products and workstations in a digital environment such as 
JACK® and RAMSIS®. Representative human models 
(RHMs) are a group of humans representing the body size 
characteristics of a designated percentage (e.g., 90%) of the 
target population (HFES 300, 2004). Use of RHMs provides 
designers with an efficient way to apply the body size 
characteristics of the target population to ergonomic design 
and evaluation (Jung et al., 2008). For example, You et al. 
(1997) evaluated the layout design of bus operator’s 
workstation in JACK® using three RHMs. 

Three generation methods (square, rectangular, and 
circular methods) have been developed which generate RHMs 
at the boundary of a designated accommodation percentage 
formed in the space of factors (or components). The square 
method proposed by Bittner et al. (1987) and Bittner (2000) 
generates RHMs at a square boundary formed in the space of 
factors extracted by factor analysis on the anthropometric 
dimensions under consideration. The rectangular method 
developed by Kim and Whang (1997) identifies RHMs at a 
rectangular boundary which is determined to statistically 
enclose a designated percentage of the population in the space 
of factors by reflecting their relative importance. Lastly, the 
circular method proposed by Meindl et al. (1993) generates 
RHMs at a circular boundary defined in the space of 
components extracted by principal component analysis.  

The limitations of the existing generation methods using 
the data reduction techniques such as factor analysis have 
been discussed. The data reduction techniques can reduce the 
original set of anthropometric dimensions to a smaller set 
while most of the body size variability (e.g., 80%) is 
accounted. This information distillation process significantly 
simplifies the generation process of RHMs; however, some 

portion of the body size variability (e.g., 20%) is ignored in 
the generation process (Meunier, 1998). Furthermore, the 
conversion process from the values of RHMs defined in the 
space of factors to the sizes of anthropometric dimensions 
inflates estimation error if there are low correlations between 
the factors and anthropometric dimensions. 

The present study developed a multi-variate generation 
method of RHMs at a boundary zone which statistically 
accommodates a designated percentage of the target 
population. The boundary zone method proposed in the 
present study formed a boundary zone for a designated 
accommodation percentage using the normalized squared 
distance from the centroid of the target population instead of 
the data reduction techniques. To compare the performances 
of the boundary zone and existing generation methods from 
each other, a comprehensive evaluation under various 
combinations of anthropometric dimensions was conducted in 
the study. 

 
BOUNDARY ZONE METHOD 

 
The present study proposed the boundary zone method 

consisting of (1) identification of a boundary zone and (2) 
cluster analysis for cases within the boundary zone. In the first 
step, the normalized squared distance of each anthropometric 
case from the centroid of the target population was calculated 
to identify the boundary zone accommodating a designated 
percentage of the target population. In the second step, cluster 
analysis was conducted for cases within the boundary zone to 
reduce the number of the cases by grouping cases with 
homogeneous characteristics. 

 
Step 1: Identification of a Boundary Zone  
 

To determine a boundary which accommodates a 
designated percentage of the target population, the values of 



anthropometric dimensions were converted into normalized 
squared distances by Equation 1. The normalized squared 
distance of normally distributed multivariate data follows Chi-
square distribution with n (the number of variables) degrees of 
freedom (Johnson and Wichern, 1988). Hence, the boundary 
of a designated accommodation percentage can be formed by 
the corresponding Chi-square value. For example, for two 
anthropometric dimensions (n = 2), the normalized squared 
distances of 90% of the target population are those smaller 
than 2

2χ (1-0.9) = 4.61.  
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where: D =  normalized squared distance 
AD = n-by-1 body size matrix 
μ = n-by-1 average body size matrix 

Σ = n-by-n covariance matrix 
)1(2 pn −χ = Chi-square value with n degree of 

freedom and p probability 
 
The boundary zone which accommodates a designated 

percentage is formed by two boundaries as shown in Figure 1. 
The two boundaries are determined by a designated 
accommodation percentage plus and minus a tolerance (e.g., 
90% ± 1%). Figure 1 illustrates the Chi-square values of two 
boundaries ( 2

2χ (1-0.89) = 4.41 and 2
2χ (1-0.91) = 4.81) when 

the number of dimensions = 2, target percentage = 90%, and 
tolerance = 1%.  
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Figure 1. Illustration of a boundary zone formed by two 

boundaries 
 
Step 2: Cluster Analysis in the Boundary Zone 

 
To generate a small group of RHMs, K-means cluster 

analysis was applied to the cases within the boundary zone. 
Some of the cases within the boundary zone have similar body 
sizes; therefore, the homogeneous cases are grouped into 
clusters to reduce the number of RHMs as illustrated in Figure 
2. An appropriate number of clusters can be determined by an 
in-depth analysis on multivariate accommodation percentage  
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(a) Homogeneous cases clustered 
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(b) RHMs generated by cluster analysis 

Figure 2. Cluster analysis for the cases within a 90% boundary 
zone 

 
(MAP) as the number of clusters increases. For example, in 
Figure 3 the optimal number of clusters can be selected as 34 
by considering the target MAP value (90%) and MAP 
stabilization. 

One case was selected from each cluster to construct an 
efficient group of RHMs. A RHM representing each cluster 
can be either the case nearest to the centroid or the centroid 
itself. To guarantee that the body size of the RHM is within 
the size range of the target population, the present study 
selected the nearest case to the centroid as the RHM 
representing the corresponding cluster. 

 
EVALUATION METHODS 

 
Anthropometric Data 
 

The 1988 US Army anthropometric survey data (Gordon 
et al., 1988) was used in the present study to evaluate the 
generation methods of RHMs. The US Army anthropometric 
data provides a large, comprehensive database on 3,987 
participants (female = 2,213, male = 1,774).  



0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

M
ul

tiv
ar

ia
te

 a
cc

om
m

od
at

io
n 

pe
rc

en
ta

ge
 (%

)

Number of clusters

number of cluster selected

 
Figure 3. Determination of an optimal number of clusters by 
K-means cluster analysis (anthropometric dimensions = 10 

and cases within the 90% boundary zone = 50) 
 

To avoid an evaluation bias, the US Army 
anthropometric data was partitioned into a learning set and a 
testing set by the holdout validation method. When 
developing a prediction model, it is necessary to verify that 
the fitted model can be generalized to future data (Hawkins et 
al., 2003). Therefore, the present study randomly divided the 
US Army anthropometric data into a learning set (n = 2,982) 
and a testing set (n = 1,000) by referring the holdout 
validation method (Wikipedia, 2008; Blum et al., 1999). 

 
Evaluation Conditions  
 

To comprehensively evaluate the boundary zone and 
existing generation methods, various evaluation conditions 
(total = 21) were prepared in terms of the number of 
anthropometric dimensions and their combinations. The 
number of anthropometric dimensions considered was four 
levels (n = 5, 10, 15, and 20). For each number condition, five 
combinations of different anthropometric dimensions were 
considered. All evaluation conditions were prepared by 
random selection of anthropometric dimensions from the US 
Army data. In addition, a set of anthropometric dimensions (n 
= 10) which are applied to computer workstation design 
(ANSI/HFES, 2007) was considered. 
 
Performance Measures 
 

The RHM generation methods were evaluated in terms 
of three aspects: (1) multivariate accommodation percentage 
(MAP), (2) outlier proportion, and (3) the number of RHMs. 
First, MAP evaluates how much proportion of the target 
population is accommodated by a group of RHMs. Second, 
outlier proportion is the percentage of RHMs that are larger 
and/or smaller than the size ranges of the target population. 
Lastly, the number of RHMs evaluates the applicability of 
RHMs to ergonomic design and evaluation in a digital 
environment. The smaller the number of RHMs, the easier the 
application to ergonomic design and evaluation due to existing 
digital human modeling systems such as JACK® require 

significant amount of time and effort in creating humanoids 
and generating postures of the humanoids (Blome et al., 
2006). 

 
Evaluation Program 
 

Matlab programs for each generation method were 
developed for efficient evaluation. The programs, first, 
prepared the evaluation conditions defined in the present 
study. Next, the programs generated groups of the RHMs 
accommodating 90% of the learning set as well as quantified 
MAP for the testing set. The algorithms for the existing three 
generation methods were developed by referring the 
generation processes specified in the previous studies (Bittner, 
2000; Kim and Whang, 1997; Meindl et al., 1993). 
 

EVALUATION RESULTS 
 

Multivariate Accommodation 
 
The MAP of the boundary zone method (91%) was quite 

close to the target percentage (90%) as shown in Figure 4. On 
the other hand, those of the square (49%) and circular (76%) 
methods were significantly lower than the target percentage (t 
(20) = -23.0, p < 0.001; t (20) = -8.6, p < 0.001). Conversely, 
the MAP of the rectangular method (96%) was significantly 
greater than the target percentage (t (20) = 9.8, p < 0.001). 
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Figure 4. Multivariate accommodation percentages of the 

generation methods of RHMs 
 
The variability of MAP of the boundary zone method 

was significantly lower than those of the existing generation 
methods. Figure 4 shows that the SD of the boundary zone 
method was 0.6%; On the other hand, the SDs of the square 
(8.2%), circular (7.3%), and rectangular (2.5%) methods were 
significantly greater than that of the boundary zone method (F 
(20, 20) = 169, p < 0.001 for square method; F (20, 20) = 15, 
p < 0.001 for circular method; F (20, 20) = 133, p < 0.001 for 
rectangular method). 

A systematic analysis on the generated RHMs identified 
that the RHMs of the existing generation methods improperly 
represented the body size diversity of the target population. 



Although the RHMs of the existing methods represented the 
body size diversity of the target population for the pairs of the 
anthropometric dimensions having different factor loading 
pattern as shown in Figure 5.a; the RHMs cannot properly 
represent the body size diversity for the pairs of the 
anthropometric dimensions having the similar factor loading 
pattern as shown in Figure 5.b.  
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(a) Pair of dimensions having different factor loading pattern 
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(b) Pair of dimensions having similar factor loading pattern 

Figure 5. Bivariate distribution of RHMs 
 

Outlier Proportion 
 
Outlier analysis showed that the rectangular method 

generated RHMs that were smaller or larger than the size 
ranges of the target population. For 95% of the total 
evaluation conditions, the body sizes of at least one dimension 
were smaller or larger than the minimum or maximum of the 
body sizes of the target population. In addition, the outlier 
proportion of anthropometric dimensions in which the body 
sizes were apart from the range of the target population was 
strongly correlated (r = 0.71, p < 0.001) with the number of 
the factors extracted by factor analysis. 

 
Number of RHMs 

 
Figure 6 shows that the average number of RHMs of the 

boundary zone method was significantly larger than those of 
the existing generation methods (t (22) = -5, p < 0.001 for 
square and rectangular methods; t (22) = -2.6, p = 0.02 for 
circular method). In addition, the variability of the boundary 
zone method was significantly greater than the existing 
generation methods (F (20,20) = 15.6, p < 0.001 for square 
and rectangular methods; F (20,20) = 4.1, p = 0.003 for the 
circular method). 
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Figure 6. Average number of RHMs  

 
The number of RHMs for all of the generation methods 

was found positively correlated with the number of 
anthropometric dimensions under consideration. The 
correlation coefficients of the square and rectangular methods 
(r = 0.75, p < 0.001) and circular method (r = 0.77, p < 0.001) 
were statistically significant and similar to each other. On the 
other hand, the coefficient of boundary zone method (r = 0.94, 
p < 0.001) was higher than those of the existing methods.  
 

DISCUSSION 
 

The present study developed a generation method of 
RHMs at a boundary zone which accommodates a designated 
percentage of the target population. To identify the boundaries 
surrounding a designated accommodation percentage, the 
boundary zone method used the normalized squared distance 
instead of the data reduction techniques, which have been 
known as the source of multivariate accommodation problem 
(Meunier, 1998). Thus, RHMs generated by the boundary 
zone method more appropriately represent the body size 
characteristics of a designated percentage of the target 
population. 

The evaluation results indicate that the existing 
generation methods should be carefully used when the 
combinations of anthropometric dimensions are applied in 
ergonomic design and evaluation. The present study found 
that the RHMs generated by the existing methods cannot 
appropriately represent the size diversity of the target 
population for the pairs of anthropometric dimensions having 
similar factor loading patterns. It is noticeed that the body 



sizes of the target population cannot be appropriately applied 
to ergonomic design and evaluation if the combinations of 
anthropometric dimensions are simultaneously considered. 

The boundary zone method requires a tolerance 
percentage (e.g., ±1 %) to form a boundary zone. If the 
tolerance percentage is too small, cases within the boundary 
zone are too small to represent the target population. 
Conversely, if the tolerance percentage is too large, 
unnecessary cases which are far apart from the boundary are 
included for the candidates of RHMs. Therefore, an 
appropriate level of tolerance should be decided by 
considering various technical aspects such as the size of 
anthropometric database and the number of anthropometric 
dimensions under consideration. The larger the 
anthropometric database, the smaller the tolerance required; 
the opposite becomes true for the size of database and the 
number of anthropometric dimensions.  

To statistically identify the boundary, the boundary zone 
method assumes that anthropometric dimensions follow a 
multivariate normal distribution. HFES 300 (2003) stated that 
the distributions of body sizes follow normal distributions and 
Roebuck et al. (1975) indicated that the body sizes related to 
the length of bones statistically follow normal distribution. 
Conversely, Vasu and Mital (2000) reported that significant 
normality violations could exist with some anthropometric 
variables. On the other hand, in the present study, the 
difference between the designated percentage and the 
proportion of the cases within a boundary showed about 1% 
anthropometric dimensions violate the normality assumption. 
However, an in-depth validation research is required to check 
the validity of the assumption. 

The boundary zone method generates a more number of 
RHMs than the existing generation methods. The more the 
number of RHMs generated, the higher the difficulty to apply 
the RHMs to ergonomic design and evaluation in a digital 
environment such as Jack® and RAMSIS®. The evaluation 
results showed that the boundary zone method requires a more 
number of RHMs to statistically accommodate a designated 
percentage of the target population than the existing methods. 
In addition, the number of RHMs required is rapidly increased 
as the number of anthropometric dimensions is increased. It 
might limit the applicability of the boundary zone method in a 
digital environment. However, this application limitation of 
the boundary zone method can be overcome if functional 
relationships between anthropometric dimensions and design 
dimensions are established in the design process, which has 
been under study as continuation of the present study. 
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