A Multivariate Evaluation Method for Representative Human Model Generation Methods: Application to Grid Method

Kihyo Jung¹, Heecheon You¹, and Ochae Kwon²

¹ Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)

² Mobile Communication Division, Samsung Electronics

Agenda

- Objectives of the Study
- Evaluation Method
- **Results**
- Discussion

Anthropometric Product Design and Evaluation

To optimize human performance by achieving the best possible fit between products and the users (HFES 300, 2004)

⇒ To achieve good fit of products to the users, representative human models (RHMs) appropriately representing the body sizes of the target population are important

Representative Human Models (RHMs)

A small number of humans (3 to 20) which are statistically representing a designated percentage (e.g., 95%) of the target population

- Good fit between products and the users
- Efficient ergonomic design and evaluation

Taxonomy of RHMs Generation Methods

Depending on the characteristic of a product of interest, RHMs can be generated at the scattered grids or the boundary

State-of-the-Art: Distributed Methods

3-step RHMs generation process of distributed methods

Note: AD = anthropometric dimension, K = key dimension, RHM = representative human model

⇒ Since the distributed methods mainly consider key dimensions in the generation of RHMs, other dimensions which are still important to design are ignored.

- Development of a multivariate performance evaluation process for distributed RHM generation methods
- Application of the multivariate evaluation process to the grid method
- 3. Investigation of factors affecting the multivariate performance of the grid method

Method: Anthropometric Dimensions and Data

- To evaluate the performance of the distributed method, 10 anthropometric dimensions related to computer workstation design (ANSI/HFES, 2007) were used
- US Army anthropometric data (Gordon, 1988)
 - n = 3,987 (female = 2,213, male = 1,774)
 - Randomly divided into learning (2,982) and testing (1,000) sets

Anthropometric dimensions

- 1. Abdominal extension depth
- 2. Buttock-knee length
- 3. Buttock-popliteal length
- 4. Elbow rest height
- 5. Foot length
- 6. Forearm-to-forearm breadth
- 7. Hip breadth
- 8. Knee height

OSTECH

- 9. Popliteal height
- 10.Thigh clearance

- Selection criteria of key dimensions (Hidson, 1991)
 - Statistical relationship between key dimensions and other dimensions
 - Small number of key dimensions (e.g., 1 to 5)
- □ To identify an optimal set of key dimensions, the trend of maximum average of adjusted R^2 was analyzed for different numbers and combinations of key dimensions

- In the space formed by the key dimensions, grids covering the target population were generated by applying a tolerance value of ± 2.5 cm, which was determined by referring to previous studies (Moon, 2002; ANSI/HFES, 2007)
 - Of the generated grids, 12 grids showing a relatively large coverage rate were selected to accommodate the 95% of the target population

10/19

60

50

40

Estimation of the body sizes of the 12 RHMs

- Key dimensions: the centroid values of the grids
- Other dimensions: estimated by regression equations with key dimensions as regressor developed by stepwise regression analysis

Dimension	Code	Regression equation	Adjusted R^2
Hip breadth	AD3	$18.87 + 0.60 \times AD2 - 0.59 \times AD1 + 0.85 \times AD5$	0.42
Elbow rest height	AD4	$25.88 - 0.43 \times AD2 + 0.19 \times AD1 + 0.59 \times AD5$	0.11
Buttock-knee length	AD6	$2.52 + 0.95 \times AD2 + 0.10 \times AD1 + 0.43 \times AD5$	0.96
Abdominal extension depth	AD7	$-3.53 + 0.24 \times AD2 - 0.15 \times AD1 + 1.27 \times AD5$	0.43
Forearm-to- forearm breadth	AD8	-3.86 - 0.36×AD2 + 0.76×AD1 + 2.48×AD5	0.55
Foot length	AD9	$3.40 + 0.41 \times AD1 + 0.32 \times AD5$	0.81
Knee height	AD10	$3.11 + 0.19 \times AD2 + 0.83 \times AD1 + 0.44 \times AD5$	0.96

□ The body sizes of the 12 RHMs which accommodate the 95% of the target population

unit: cm

	Key dimensions			Other dimensions						
RHM No.	Popliteal height	Buttock- popliteal length	Thigh clearance	Abdominal extension depth	Buttock- knee length	Elbow rest height	Foot length	Forearm- to-forearm breadth	Hip breadth	Knee height
1	35	15	42	20	52	23	23	44	36	46
2	35	15	47	21	57	21	23	42	39	47
3	35	20	47	28	59	24	24	54	43	50
4	40	15	42	19	53	24	25	48	33	51
5	40	15	47	21	58	22	25	46	36	52
6	40	15	52	22	62	20	25	44	39	52
7	40	20	47	27	60	25	26	58	40	54
8	40	20	52	28	65	23	26	56	43	55
9	45	15	47	20	58	23	27	50	33	56
10	45	15	52	21	63	21	27	48	36	57
11	45	20	47	26	60	26	28	62	37	58
12	45	20	52	27	65	24	28	60	40	59

Quantification of Multivariate Accommodation Percentage

- Accommodation percentage: the proportion of cases which belong to the grids formed along the generated RHMs by applying a tolerance value of ± 2.5 cm (McCulloch et al., 1998)
 - The accommodation percentage can be calculated for different numbers (1 to 10) of anthropometric dimensions

Note: blue dot = accommodated people, green dot = not accommodated people

POSTECI

Results: Multivariate Accommodation Percentage

- Ò
- The accommodation percentages of the generated RHMs decreased as the number of anthropometric dimensions increased.
 - □ This decreasing trend was caused due to estimation inaccuracies of anthropometric dimensions by the key dimensions.

Number of anthropometric dimensions

Three Factors Affecting Performance

2. Average adjusted R^2 (AR) between key dimensions and other dimensions

Three Factors Affecting Performance

Sum of the ranges (SR) of anthropometric dimensions

3.

Statistical Significance and Influence of the Factors 🧷

- Ò
- Statistical significance of the three factors and their relative influence on accommodation performance were examined by multiple stepwise regression analysis
 - 1) Standardization of the three factors (0 to 1) to investigate their relative influence on the performance
 - 2) Stepwise regression to build the best regression model ($p_{in} = 0.05$ and $p_{out} = 0.1$)
 - 3) Adjusted R^2 of the regression model = 0.85

Accommodation % = $56.5 + 55.2 \times AR - 39.8 \times OA - 20.1 \times SR$

where: $AR = average adjusted R^2$, OA = overlap area of grids, SR = sum of body size ranges

 $\square \quad \text{Relative influence order: AR (2.7 times) > OA (2.0 times) > SR (baseline)}$

Discussion

Quantitative evaluation of the grid method: Accommodation percentage dramatically ↓, the number of anthropometric dimensions ↑ (98% for 1 dimension, 12% for 10 dimensions)

- □ Investigation of factors affecting the performance of the grid method
 - 3 factors (AR, OA, and SR) influencing on the performance
 - A better RHM generation method can be developed by considering the characteristics of the 3 factors
- □ The multivariate evaluation process in this study can be used to evaluate:
 - Other existing distributed and boundary RHM generation methods
 - A new RHM generation method

Q & A

Thank you for your attention...

Follow-Up Study

