Evaluation of the FSATM Hand Force Measurement System

Kihyo Jung, Heecheon You, and Ochae Kwon

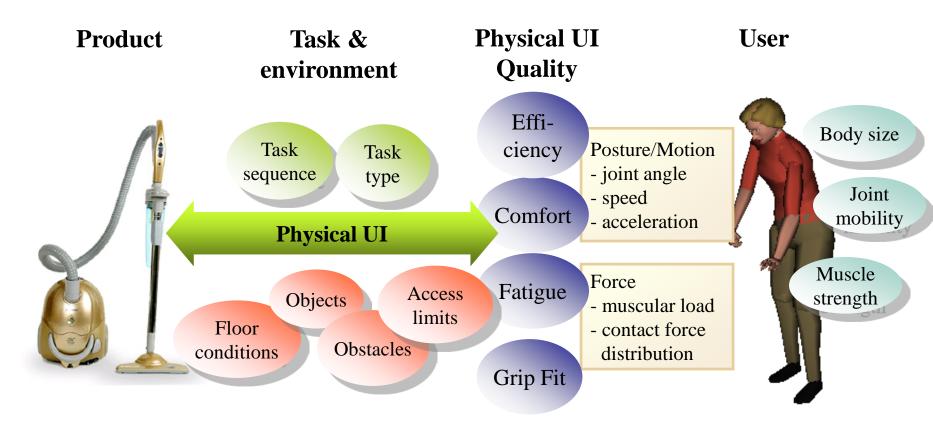
Ergonomic Design Technology Lab Department of Industrial & Management Engineering Pohang University of Science & Technology

Agenda

- Objective of the Study
- Method
- **Results**
- Discussion

Use of excessive hand force at work may cause upperextremity musculoskeletal disorders (NIOSH, 1997).

Body part		Risk factor	Evidence*
Neck/Shoulder		Repetition	++
		Force	++
		Posture	+++
		Vibration	+
		Repetition	+
Elbow		Force	++
EIDOW		Posture	+
		Combination	+++
	CTS	Repetition	++
		Force	++
		Posture	+
Hand/ Wrist		Vibration	++
		Combination	+++
	Tendinitis	Repetition	++
		Force	++
		Posture	++
		Combination	+++


OSTEC

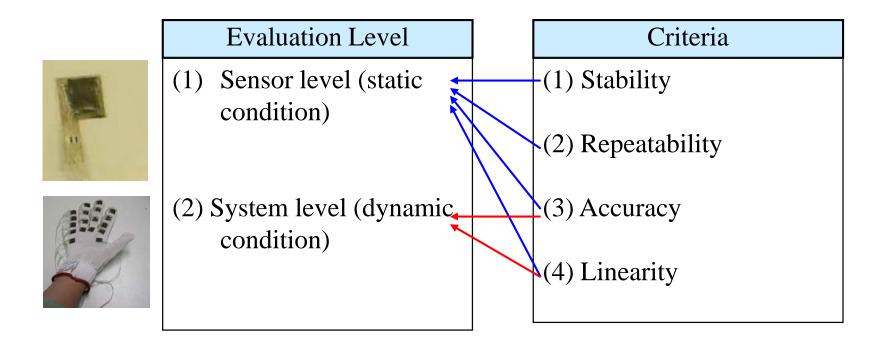
(Note) +++: strong evidence; ++: evidence, +: insufficient evidence

Force: Design Factor in Product Interface

The level of force applied and the distribution of contact force affect the quality of physical user interface.

4 / 24

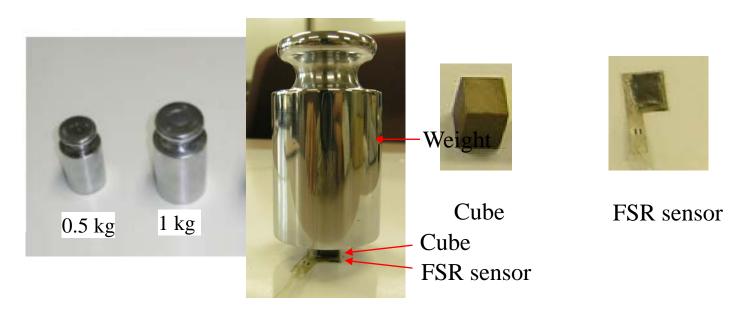
Hand Force Measurement Systems


	Hand Dynamometer	FSA (Force Sensitive Application)	
Sensor	ONE DEVICE - THREE LEVELS OF PERFORMANCE DIGIT-grip* OF DIGIT-grip*	• Force SR)	
Measurement	• Composite forces applied on the handle	 Individual contact forces transferred to the surface of the product 	
Product evaluation	• Low applicability	• High applicability	
Performance	 Accuracy: error < 0.0002 kgf Stability & repeatability: CV < 1% 	• Lack of comprehensive understanding	

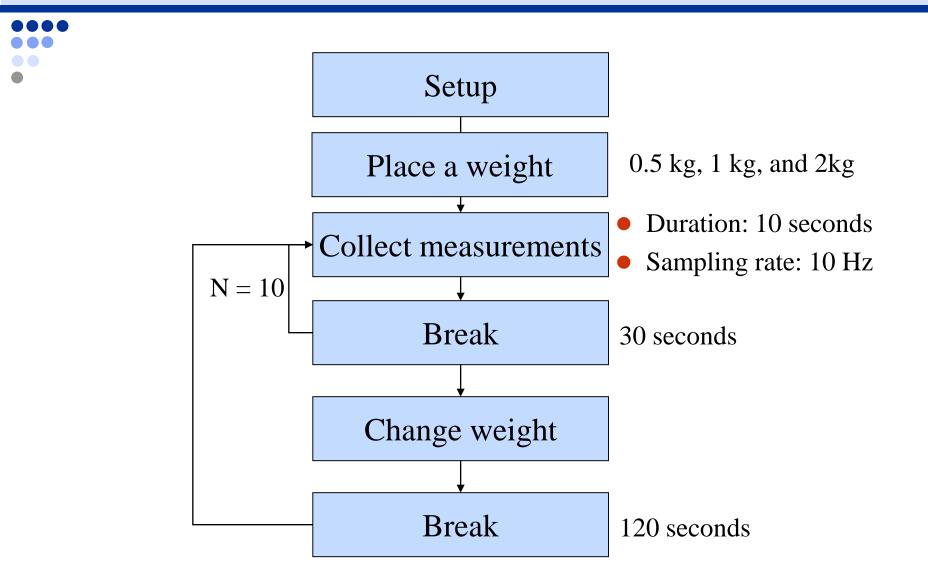
Objective of the Study

Ò

Evaluate the FSA system in terms of stability, repeatability, accuracy, and linearity at the sensor and system levels.

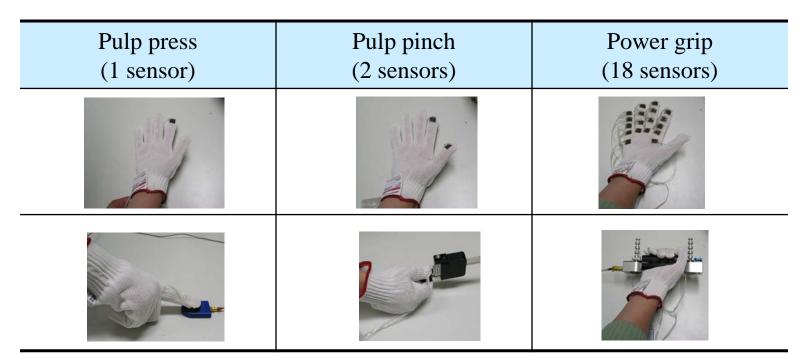


Method: Sensor Level Evaluation

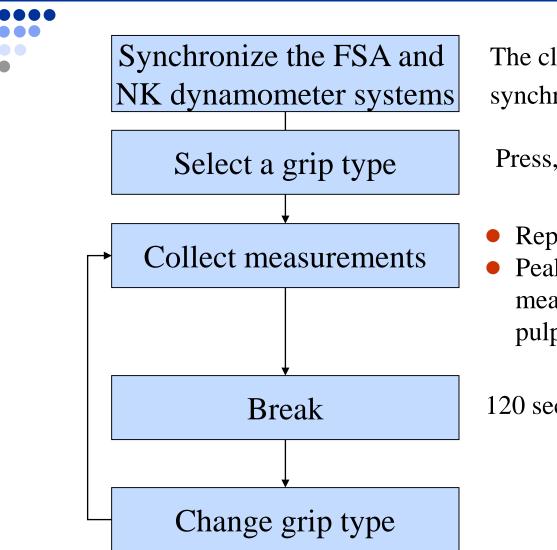

Sensor performance evaluation using 3 weights (0.5 kg, 1 kg, 2 kg)

□ To keep the contact area same, a 0.24-inch³ cube (0.6 g) was placed between a weight and the sensor.

Sensor Level Evaluation Process



System Level Evaluation

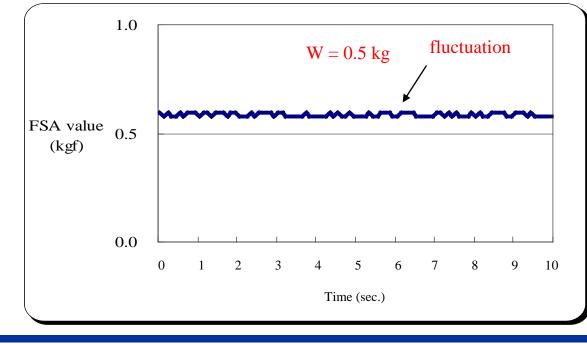

Sensors were attached on the palmar side of the glove.

□ Compared values from the FSA with those from the NKTM dynamometer (considered as a gold standard).

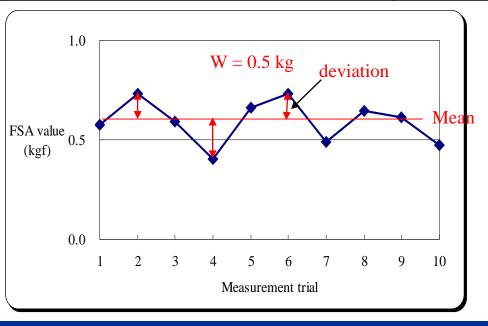
System Level Evaluation Process

The clocks of two computers synchronized by AboutTimeTM

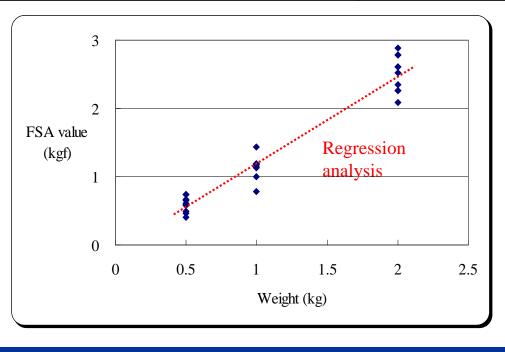
Press, Pinch, and Grip


- Repetition = 3 exertions
- Peak force controlled within measurement range: pulp press = 2, pulp pinch = 4; power grip = 25 kgf)

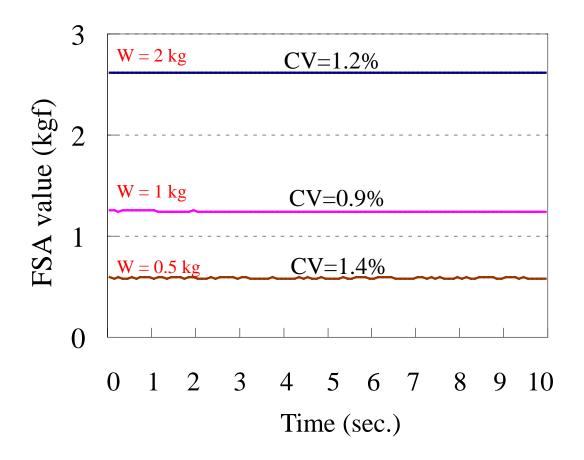
120 seconds


Criteria	Definition	Metrics
Stability	Fluctuation of measurements under a constant force	Coefficient of Variation (CV = SD/mean)
Repeatability	Agreement between repeated measurements under the identical condition	Coefficient of Variation (CV)
Accuracy	Difference between the measurement and true value	Mean difference (MD)Standard error (SE)
Linearity	Linear relationship between measurements and true values	R^2

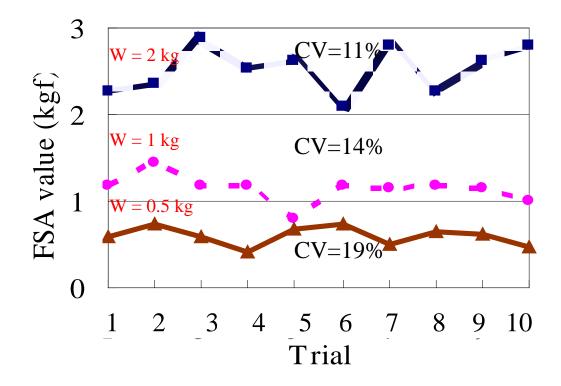
	Criteria	Definition	Metrics
•	Stability	Fluctuation of measurements under a constant force	Coefficient of Variation (CV = SD/mean)
	Repeatability	Agreement between repeated measurements under the identical condition	Coefficient of Variation (CV)
	Accuracy	Difference between the measurement and true value	Mean difference (MD)Standard error (SE)
	Linearity	Linear relationship between measurements and true values	R^2



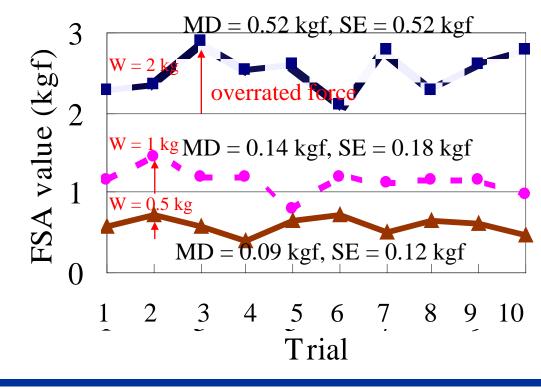
	Criteria	Definition	Metrics
	Stability	Fluctuation of measurements under a constant force	Coefficient of Variation (CV = SD/mean)
	Repeatability	Agreement between repeated measurements under the identical condition	Coefficient of Variation (CV)
	Accuracy	Difference between the measurement and true value	Mean difference (MD)Standard error (SE)
	Linearity	Linear relationship between measurements and true values	R^2
		FSA value (kgf) 0.5 Mean difference (MD)	Mean
		0.0 1 2 3 4 5 6 7	8 9 10
SCIENCI VI		Measurement trial	
2 8 8 10 (S) 1986	POSTECH	13 / 24	


Criteria	Definition	Metrics
Stability	Fluctuation of measurements under a constant force	Coefficient of Variation (CV = SD/mean)
Repeatability	Agreement between repeated measurements under the identical condition	Coefficient of Variation (CV)
Accuracy	Difference between the measurement and true value	Mean difference (MD)Standard error (SE)
Linearity	Linear relationship between measurements and true values	R^2

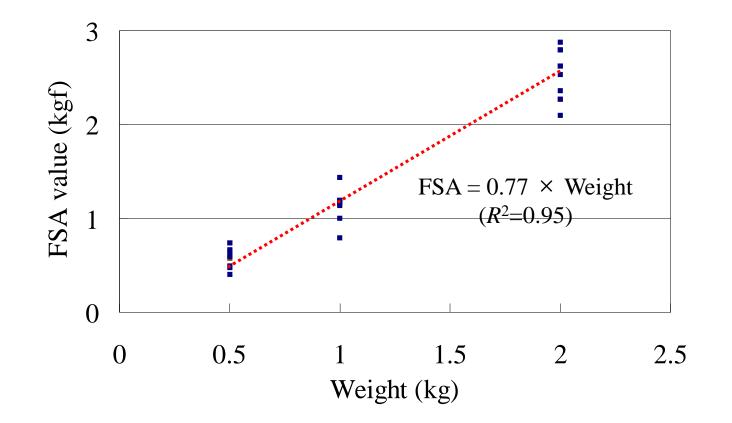
Sensor Level Result: Stability



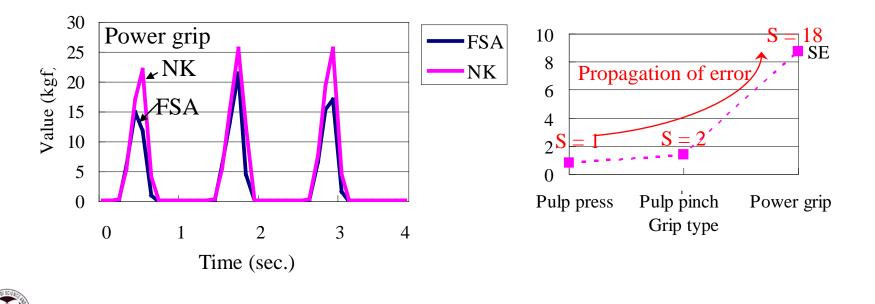
Sensor Level Result: Repeatability

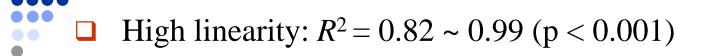

- □ Low repeatability: $CV = 11 \sim 19\%$
- □ Repeatability decreases as weight decreases.

Sensor Level Result: Accuracy


- Low accuracy: $MD = 0.09 \sim 0.52 \text{ kgf}$, $SE = 0.12 \sim 0.52 \text{ kgf}$
- □ MD and SE increase as weight increases.
 - \Rightarrow Accuracy decreases as weight increases.
- □ Tendency to produce overrated values.

Sensor Level Result: Linearity


System Level Result: Accuracy


Low accuracy: $MDs = -0.09 \sim -1.49 \text{ kgf}$

OSTECH

- Negative MD values mean that the FSA system produce underrated forces than NK dynamometer.
- Propagation of error: SE at pulp press = 0.79, SE at pulp pinch = 1.4, SE at power grip = 8.73

System Level Result: Linearity

Power grip: $R^2 = 0.99$

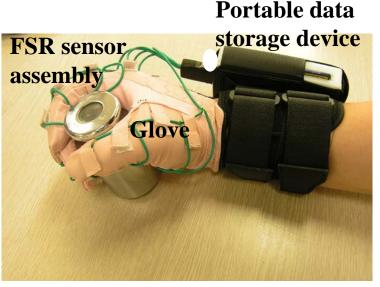
Discussion

)

Criteria	Sensor level	System level
Stability	Good (CV = 0.9 ~ 1.4%)	_
Repeatability	Satisfactory (CV = 11 ~ 19%)	-
Accuracy	Satisfactory (MD = 0.09 ~ 0.52 kgf)	Satisfactory (MD = -0.09 ~ -1.49 kgf)
Linearity	Good ($R^2 = 0.95$)	Good ($R^2 = 0.82 \sim 0.99$)

Discussion

- There is discrepant experimental result in sensor and system level evaluation
 - Difference calibration and usage condition (flat floor vs. glove worn)
 - Smaller contact area due to sensor interference
- ❑ Care should be placed in data interpretation when several sensors are involved in measurement (e.g., power grip).
 - MD and SE increase as the number of sensors involved in measurement increase.
 - Measurements should be compared and interpreted on a relative basis, not a absolute basis.



Follow-up Study

☐ Key features of i-ForceGlove

- Portable data storage device (8 hours at 10 Hz)
- 23 FSR sensors for each hand
- 4 sizes of ergonomic gloves
- Software for easy analysis & report preparation

Analysis Report Date: 2003-08-10 ID: Subj-01 Experiment date: 2003-06-17 Name: Jack Description: Gripping ta Measurement duration: 60 second Remarks: Subject 01, First trial Temperature: 23 A verses from distributiv Analysis & report generation software Unit: hp Print | Clo:

Q & A

Thank you for your attention...

