

Development of User Satisfaction Models for Passenger Car Interior Materials

Taebeum Ryu*

Kyunghee Oh*, Heecheon You*, Myung Hwan Yun**

*Pohang University of Science and Technology, Korea

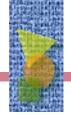
**Seoul National University, Korea

Contents

- Customer needs for passenger cars
- Objectives of the study
- Satisfaction survey of interior materials for passenger cars
- Development of satisfaction models
- Conclusions

Customer needs of passenger cars

- Customer needs shift from functional capability to aesthetic design
 - "For consumers, the look and feel of craftsmanship that comes from <u>rich-looking materials</u>, <u>careful fits</u> and <u>elegant details</u> can be more important than top rankings from Consumer Reports"
 (December 3, 2001, Wall Street Journal)
 - "For young women, easy seat adjustment and interior color coordination are more important than horsepower or trunk capacity" (March 4, 2002, BusinessWeek)

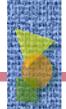

Importance of interior materials

- Efforts on interior materials
 - High quality leather
 - Exotic wood
 - Chromed material
 - Brushed metal
 - Rich looking plastic (wood/metal grain)

- Few Kansei (image/impression) studies on interior materials
 - Shape
 - Steering wheel and dash board shape (Jindo and Hirasago, 1997)
 - Color and shape
 - Color and seat design of construction vehicles (Nakata, 1997)
 - Impression of visual aspects
 - Roominess (Tanoue, 1997)
 - Only type of material considered
 - Jindo and Hirasago (1997) and Nakata (1997)
- Needs for an in-depth study for material design variables

Objectives of the study

- Identify the design variables of interior materials
 - Materials used in the various interior parts of a passenger car
- Propose a method of variable screening for model development
 - For stable and significant models in statistical and technical aspects
- Develop satisfaction models of interior materials for selected interior parts



Satisfac

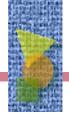
Satisfaction survey of interior materials

- Passenger cars
 - 30 car models made in various countries
 - 7 (Japan), 6 (Korea), 6 (USA), 4 (Germany), 3 (France), 1
 (Czechoslovakia), 1 (India), 1 (Italy), 1 (Spain)
 - 23 compact cars & 7 sport-utility vehicles
- Six interior parts evaluated

Design variables of interior materials

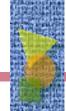
- Identifying material design variables for the selected interior parts
 - Web sites of customer reviews
 - Interior design engineers
 - Previous studies (Jindo and Hirasago, 1997; Nakata, 1997, Nishimatsu, 2001)
 - ⇒ 8 ~ 15 variables depending on interior part

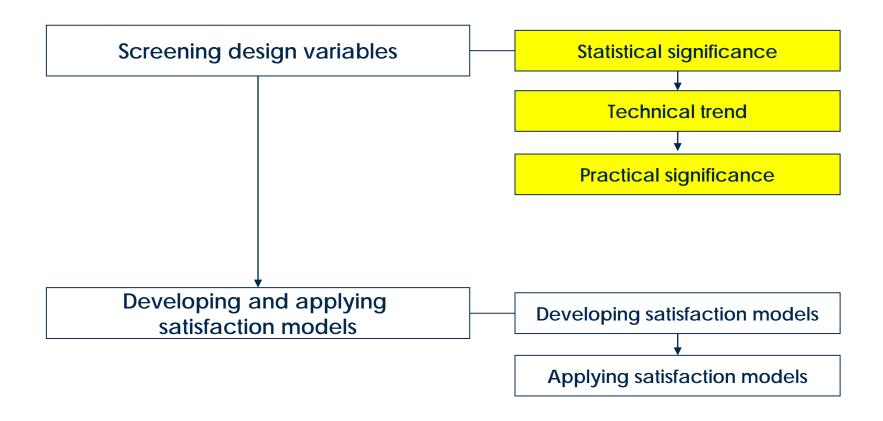
(e.g.) Material design variables - crash pad (selected)


Design variable	Levels	
Type of material	1~4 (1: plastic, 2: polyurethane, 3: leather, 4: miscellaneous)	
Color	8 colors by standard color table	
Shape of embossing	1~7 (1: pinhole, 2: circular concave, 3: circular convex, 4: leathery, 5: stony, 6: flat, 7: miscellaneous)	
Size of embossing	1~7 (1: < 0.1mm, 2: 0.1~0.3, 3: 0.3~0.5, 4: 0.5~0.7, 5: 0.7~0.9, 6: 0.9~1.1, 7: >1.1)	
Arrangement of embossing	0~1 (0: random, 1: regular)	
Softness	1~7 (1: very soft, 7: very hard)	
Slipperiness	1~7 (1: very slippery, 7: very frictional)	

Participants and rating scale

- Participants
 - 30 males (21 in twenties, 9 in thirties)
 - Age average (S.D.) = 28.7(6.6)
- Rating Scale


Modified magnitude estimation scale (Han et al., 2000)


Satisfaction evaluation procedure

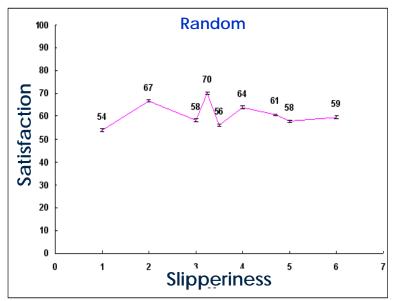
- Introduction
 - Purpose and evaluation method
- Satisfaction evaluation of interior part materials
 - Each participant evaluated all passenger cars
 - Balanced Latin-square design
- Debriefing

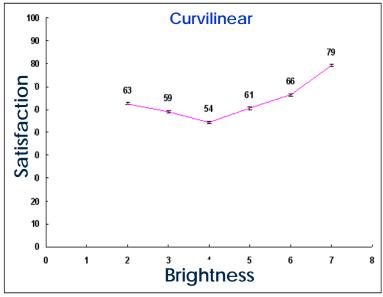
Satisfaction model development

1. Statistical significance

- Test the statistical significance of each variable
 - To include statistically significant design variables in the subsequent model development process
 - ANOVA
 - Design variable of interest

ANOVA Summary - crash pad

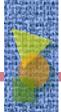

- Age
- Design var. x Age


Code	Design Variable (DV)		Age	Age × DV
х1	Type of material	0	0	×
x2	Color	0	0	×
х3	Brightness	0	0	×
х4	Saturation	×	0	×
х5	Shininess	0	0	×
х6	Shape of embossing	0	0	×
х7	Size of embossing	0	0	×
х8	Marginal size of embossing	0	0	×
х9	Arrangement of embossing	0	0	×
x10	Clearness of embossing	0	0	×
x11	Roughness	0	0	×
x12	Softness	0	0	×
x13	Slipperiness	0	0	×

* O: significant at $\alpha = 0.05$; **x**: not significant

2. Technical trend

- Evaluate the technical trend of each design variable
 - For each quantitative variable with statistical significance
 - Objectives
 - To include design variables showing systematic effects on satisfaction in the model
 - To determine the order of a design variable in the model
 - Plot of satisfaction scores over the range of each variable


3. Practical significance

- Practical significance testing
 - To include design variables whose effects on satisfaction were large enough from a practical aspect in the model
 - Difference of satisfaction means among grouped levels by the Duncan test was compared with a designated value (e.g., 5)

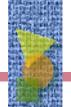
Shininess	N	Mean	Duncan Grouping	Group average	Difference of group averages
1	90	65	Α		
3	269	63	Α	63	
2	210	61	Α		7
4	90	57	В		/
6	29	55	В	56	
5	148	55	В		

^{* 1~7(1:} very dull, 3: dull, 5: shiny, 7: very shiny

Results of variable screening

Example of crash pad material design variables

Code	Design variables	Statistical significance	Technical trend	Practical significance
X ₁	Type of material	0	N.A.	0
X ₂	Color	0	N.A.	0
X ₃	Brightness	0	○ (2 nd curvilinear)	0
X ₄	Saturation	×	-	-
X ₅	Shininess	0	O (linear)	0
X ₆	Shape of embossing	0	N.A.	0
X ₇	Size of embossing	0	N.A.	0
x ₈	Marginal size of embossing	0	O (linear)	×
X ₉	Arrangement of embossing	0	N.A.	×
X ₁₀	Clearness of embossing	0	N.A.	0
X ₁₁	Roughness	0	O (linear)	0
X ₁₂	Softness	0	O (linear)	0
X ₁₃	Slipperiness	0	×	-


Satisfaction model development

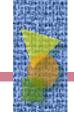
- Developed a model for each interior part with design variables screened
- Applied the quantification I method
 - Similar to generalized linear model
 - Used in Kansei engineering
 - Focus on quantification of design variable effects

(e.g.) Interior material satisfaction model – crash pad (illustrated)

Design variables	Levels	Partial corr.	Partial reg.	Not satisfied ←	> Satisfied
2 co.g. ranas.cc	Levels	Turtiur 55111	coeff	-0.5	0.5
X1(type of material)	Plastic	0.0123	-0.24		
	Polyurethane	0.0123	0.32		
X6(shape of embossing)	circular convex		-0.02		
	circular concave		13.07		
	pinhole	0.1936	8.38		
	leathery	0.1930	-1.51		
	stony flat		-2.63		4.
	miscellaneous		8.38		

Preferred material characteristics

(e.g.) crash pad material


Code	Design variables	Preference
X ₁	Type of material	Polyurethane > Plastic
X ₂	Color	Orange > reddish yellow > Blue > Achromatic > Deep blue > Dark purple > Dark blue > Yellow
X ₃	Brightness of color	Bright > Dark
X ₅	Shininess	Dull > Shiny
X ₆	Shape of embossing	Circular concave > Pinhole > Circular convex > Leathery > Stony
X ₇	Size of embossing	0.3 ~ 0.5 cm
X ₁₀	Clearness of embossing	Indistinct > Distinct
X ₁₁	Roughness	Rough > Smooth
X ₁₂	Softness	Soft > Hard

Conclusion

- Satisfaction survey of vehicle interior materials
 - 6 interior parts of 30 passenger cars
 - Identified 8 to 15 material design variables for the interior parts
- Variable screening method
 - Stable and significant models from statistical and practical aspects
 - 3 aspects (statistical significance, technical trend, and practical significance)
- Satisfaction model development and application
 - Generalized linear model (quantification I method)
 - Relatively important design variables for satisfaction
 - Preferred material design characteristics

Q & A

