

Evaluation of the WristCorder™: A Hand-Forearm Motion Analyzer

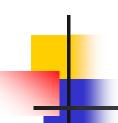
Heecheon You, Ph.D.[†]

Deborah Scarlett[‡], Adam Chao[†], Michael Bohan[‡], Jennifer Shores^{*},

Alex Chaparro, Ph.D.[‡], Michael Rogers, Ph.D.^{*}, and Don Malzahn, Ph.D.[†]

[†]Industrial and Manufacturing Engineering [‡]Psychology

*Kinesiology and Sport Studies


Wichita State University

Agenda

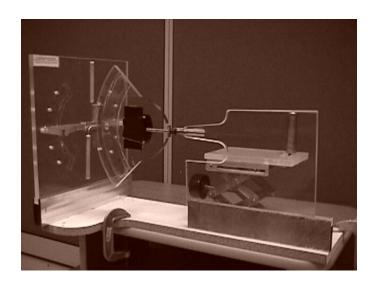
- Introduction
 - ✓ WristCorder™ System
 - Objectives
- Materials & Methods
- Evaluation Results
- Conclusions

Problem Statement

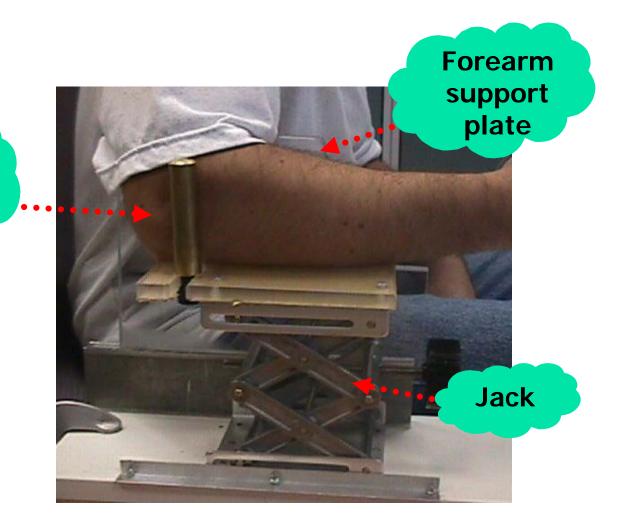
- Improper hand-forearm motions have been identified as a major risk factor of UE-MSDs.
- A valid goniometric instrument to measure hand-forearm motions in multiplanar and dynamic environments has been needed for effective control and assessment of UE-MSDs at work.

WristCorder™ System

- 3D hand-forearm motion analyzer, developed by MotionWatch LLC.
- Hall-effect sensors attached at the glove.
- Attachable recording device: 10 Hz for 8 hrs.
- Statistical analysis of hand-wrist motion.

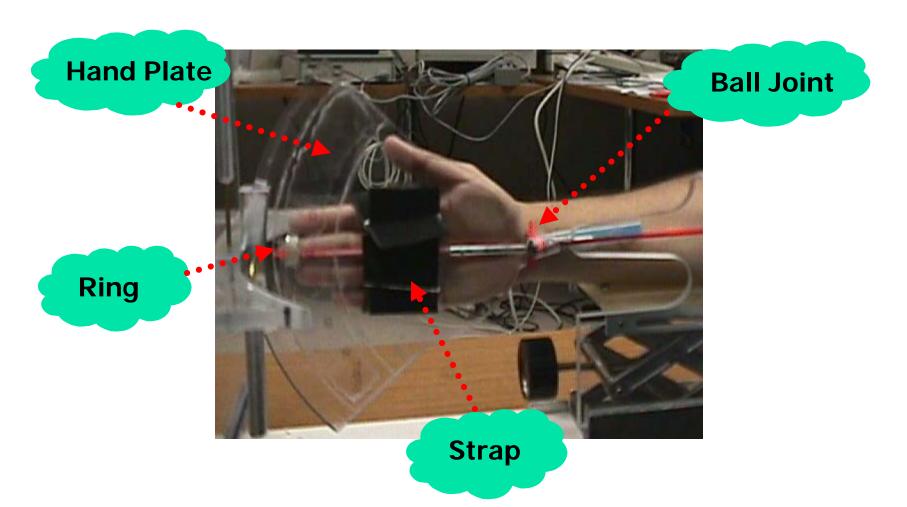


Objectives


- Evaluate the linearity, sensitivity, and reliability of WristCorderTM.
- Develop a fixture to evaluate WristCorder[™] along three axes:
 - ✓ Wrist Flexion/Extension (F/E),
 - ✓ Wrist Radial/Ulnar Deviations (R/U), and
 - ✓ Forearm Pronation/Supination (P/S).

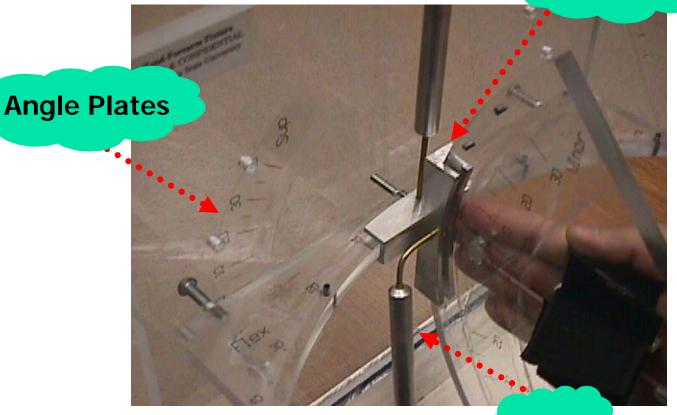
Materials & Methods

- WristCorder™: Two glove sizes (medium; large).
- Tri-axial Hand-Forearm Fixture
 - ✓ Forearm section
 - ✓ Hand section
 - Angle-control section



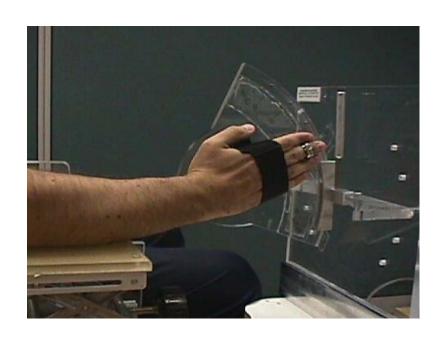
Forearm Section

Elbow support bar

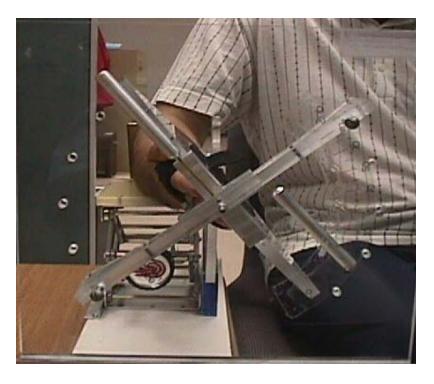

Hand Section

Angle Control Section

Coupling


Pins


Flexion/Extension


Radial/Ulnar Deviation

Pronation/Supination

Participants

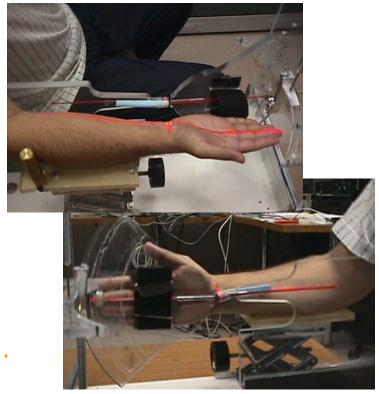
8 participants (4 for each glove size).

Hand Size	Medium	Large
Hand circumference (at the metacarpals)	16.1–17.4 cm	19.1–22.4 cm
Forearm circumference (relaxed)	19.6–25.0 cm	22.0–31.0 cm

Selection Criteria

- Age: 18 years of age or older.
- Health conditions: No history of injuries at the hand, wrist, or forearm.

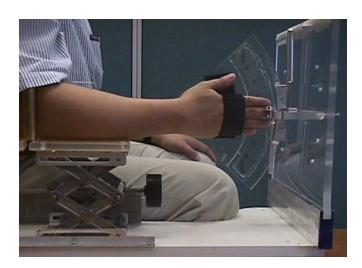
Design of Experiment


• Uniplanar movements were measured by using WristCorder™ at five different positions for each dimension with three repetitions.

Dimension	Positions	
F/E	F40°, F20°, neutral, E20°, E40°	
R/U	R10°, neutral, U10°, U20°, U30°	
P/S	P40°, P20°, neutral, S20°, S40°	

 The experiment conditions were randomized within subject.

Procedures


- The flexion/extension sensor of WristCorder was aligned with the third metacarpal and dorsal center of the wrist.
- A tape strip was placed on the ventral side of the hand-forearm, passing through
 - the middle finger,
 - the center of the wrist,
 - the middle of the forearm.

Procedures (cont'd)

 Each participant was seated in a chair adjusted at the elbow height; the hand, wrist, and forearm were restrained securely.

 Measurements were made while the hand was held at certain positions on the fixture.

Results - Linearity

 Regression analysis indicated that sensor values and angular values have strong linear relationships across all movement directions.

```
\checkmark F/E: R^2 = .80 \sim .99
```

$$\sqrt{\text{U/R}}$$
: $R^2 = .93 \sim .99$

$$\sqrt{P/S}$$
: $R^2 = .85 \sim .99$

Results - Sensitivity

- ANOVA analysis indicated that the sensitivity of each sensor significantly varies depending on movement direction (p < .05).
- The minimum angles that WristCorder™ can measure are

✓ F/E: 0.52° / 0.38°

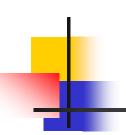
✓ U/R: 0.91° / 0.61°

✓ P/S: 2.44° / 3.26°

Results - Reliability

- ANOVA analysis indicated that the sensor values were stable across the three repetitions.
- The standard errors of measurement (SE_{meas}*) of WristCorder™ are

```
✓ F/E: 0.89°
```


U/R: 0.83°

P/S: 2.25°

*
$$SE_{\text{meas}} = SD_{\text{inter-subject}} \times \sqrt{1 - r_{\text{btwn-repetition}}}$$
 (Norkin & White, 1995)

Conclusions

- The hand-forearm fixture enabled the accurate control of positioning of the hand-forearm at a designated angle in 3D.
- WristCorderTM produced a strong linear relationship with movements of the hand-forearm within the tested angle ranges.
- Sensitivity of the F/E and U/R sensors was less than 1° and that of the P/S ranged from 2.5° to 3.5°.
- Standard deviations due to measurement error were about 1° for F/E and U/R and 2.5° for P/S.

Acknowledgements

The WristCorder evaluation project was funded by MotionWatch LLC.