

ENGINEERING POSTECH

Ergonomic Design Technology Lab

im

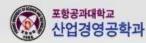
Subjective and Objective Evaluation of the Ergonomic User Interface (UI) Design of a New Optical Brain-Machine Interface (O-BMI) System

신규 광학적 뇌-기계 인터페이스 시스템의 인간공학적 UI 디자인의 주관적 및 객관적 평가

최신아¹, 정하영¹, 김하림¹, 펭린칭², 양샤오펑³, 리밍캉⁴, 리우창하오⁴, 왕루이수에⁴, 한지아웨이⁴, 장샤오민⁴, 유희천¹

¹ 포항공과대학교 산업경영공학과, ²저장연구실 인공지능연구소, ³ 한동대학교 ICT창법학부, ⁴저장대학교 의용 생체 공학과

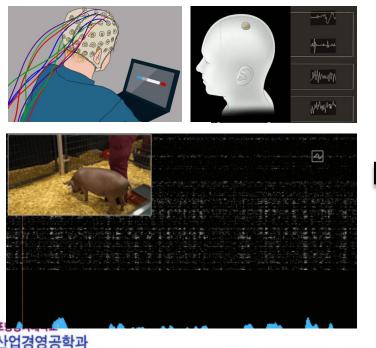
본 연구는 한국연구재단의 "한중 협력 연구 사업"의 지원을 받아 수행된 연구결과임(NRF-2018K1A3A1A20026539)

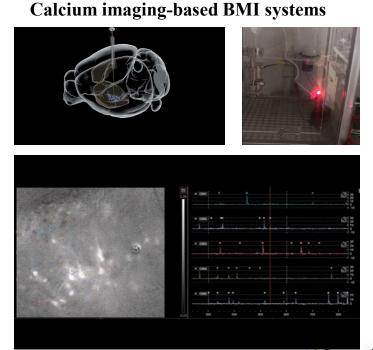

Global Contributor to Eco-Techno-Humanopia

Contents

- Background
- Development of O-BMI System
- Subjective and Objective Evaluation
 - Participant & Test Object
 - Apparatus & Environment
 - Experimental Protocol
- Results
 - Task Completion Time & Scan-Path Length
 - Perceived Cognitive Workload & Satisfaction
- Discussion

Ergonomic Design Technology Lab

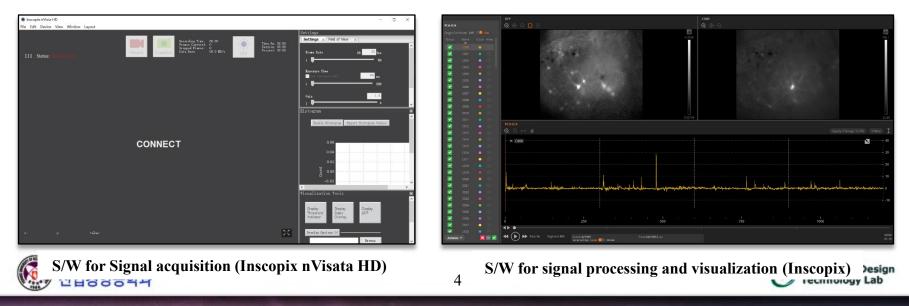

Background: O-BMI System


A brain-machine interface (BMI) is a device that translates neuronal information into commands capable of controlling an external device.

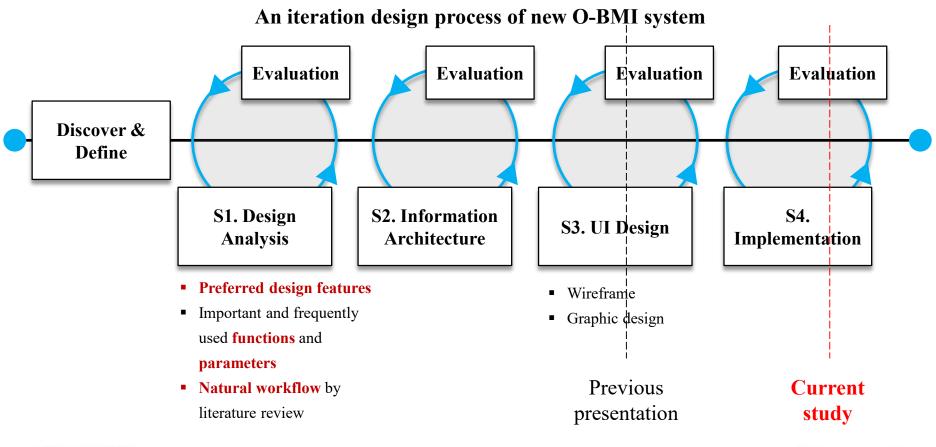
3

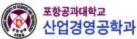
Optical brain-machine interface (O-BMI) research based on calcium imaging technology has shown great advantages in brain science

Electrophysiology-based BMI systems



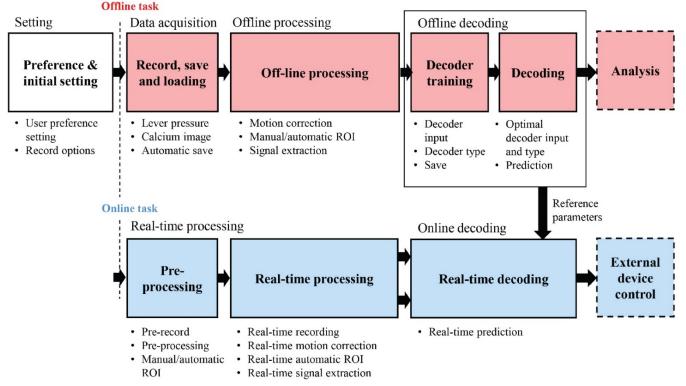
Limitations of Existing O-BMI System

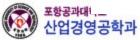

- □ Few O-BMI system is developed for video acquisition, image processing, neuron extraction, and signal visualization.
- □ Limitations of existing OBMI S/W need to be improved.
 - ✓ Requirement of real-time processing of neuron signals to control external devices
 - Many usage problems (e.g., inconvenience of using independent modules) were complained by neuron scientists.



Examples of existing O-BMI system

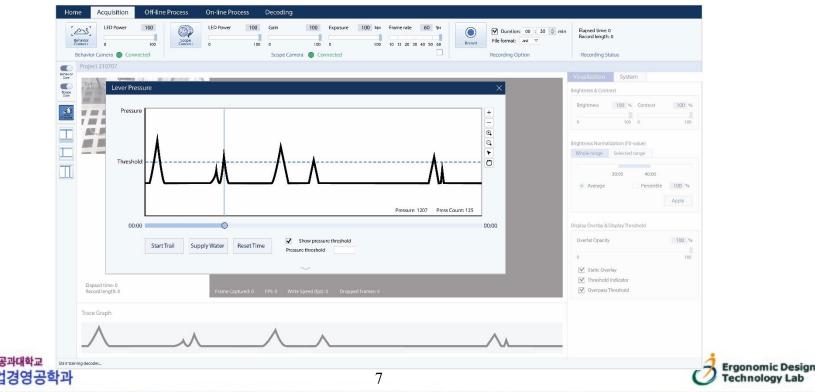
Development of an Ergonomic UI Design of a O-BMI System (1/2)


An new O-BMI system is developed through a iteration design process by user researches



Modules of a O-BMI System

☐ Four modules were included: (1) data acquisition, (2) off-line processing, (3) on-line processing, (4) decoding.

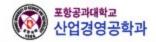

Task flow of a new O-BMI system based on the benchmarking of existing systems

UI Design Features of O-BMI System

- Advanced design features were provides in terms of task-oriented navigation, a modularized structure, a changeable and adjustable layout, and integrated functions.
 - Integration of display- and control-related functions of lever pressure gauge in a new O-BMI system (illustrated)

GUI Design of the New O-BMI System

Objective of the Study

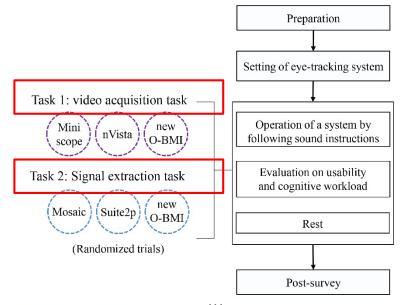

Subjective and Objective Evaluation of the UI Design of the New O-BMI System

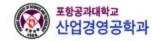
1. Development of subjective and objective evaluation protocols for

the UI design of the new O-BMI system

2. Evaluation on the new UI design of O-BMI system by comparing

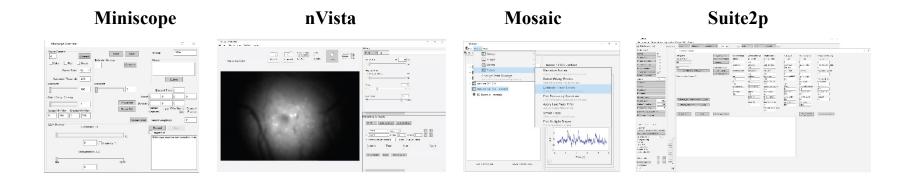
with the existing systems




Experimental Protocol

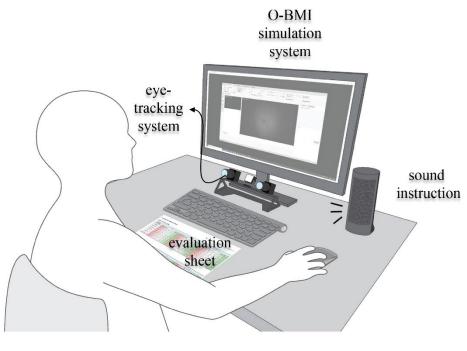
- The usability test was developed to evaluate the task completion time, scan path length, perceived cognitive workload, satisfaction of the UI design using subjective and objective methods
- Three steps (1) preparation of the experiment, (2) simulation of system operations, and
 (3) evaluation of perceived cognitive workload and satisfaction

Experiment procedure of O-BMI usability testing



Participant & Test Object

- **10 participants** (age = 27.1 ± 3.9 years)
 - ✓ 5 neuroscience researchers (work experience = 3.4 ± 1.1 years)
 - ✓ 5 ergonomic experts (work experience =3.6 ± 2.7 years)
- The O-BMI UI prototypes were compared with 4 existing systems (Miniscope, nVista, Mosaic, and Suite2p; grayscale color scheme digital prototyped)

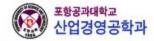


The present study was approved by the Institutional Review Board of the Pohang University of Science and Technology (PIRB-2020-E033) and each participant was given informed consent.

Apparatus & Environment

- A screen recorder and a eye-tracking system were used to measure the task completion time and scan-path length.
- A usability questionnaire was used to evaluate the perceived cognitive workload and satisfaction.

1

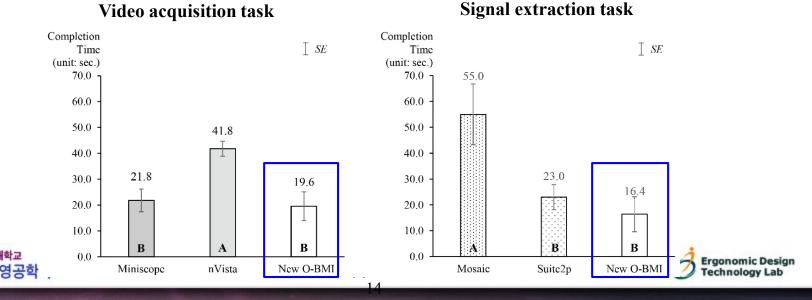

Experiment setup for usability testing of O-BMI systems.

포하고과대학교

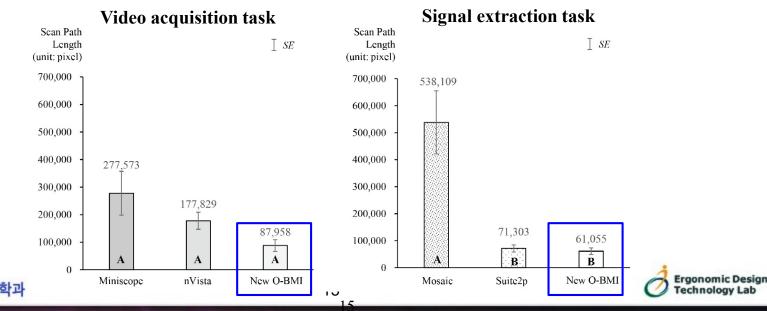
Eye-tracking system (faceLABTM, Seeing Machine); RecMaster (Suzhou Aunbox Software Co., Ltd., Suzhou, China)

Statistic Analysis

- □ Statistical differences were analyzed by ANOVA followed by a post hoc analysis with the Tukey's HSD test at $\alpha = 0.05$. Minitab v.19.
 - ✓ Task completion time
 - ✓ Scan-path length
 - \checkmark Perceived cognitive workload
 - \checkmark Satisfaction



Results: Task Completion Time


- The new O-BMI UI design showed **improved performance** than the existing O-BMI UI designs in terms of task completion time.
 - ✓ Video acquisition task: ↓ 10.1% and ↓ 53.1% compared to Miniscope and nVista UI designs, respectively (*F*[2, 12] = 7.70, *p* = 0.007)
 - ✓ Signal extraction task: ↓ 70.2% and ↓ 28.7% compared to Mosaic and Suite2p UI designs, respectively (F[2, 12] = 6.16, p = 0.014)

Comparison of O-BMI user interface designs in terms of task completion time

Results: Scan-Path Length

- The new O-BMI UI design showed **better performance** than the existing O-BMI UI designs in terms of scan-path length (significant difference in signal extraction task).
 - ✓ Video acquisition task: ↓ 68.4% and ↓ 50.7% compared to Miniscope and nVista UI designs, respectively (F[2, 12] = 3.49, p = 0.064)
 - ✓ Signal extraction task: ↓ 88.7% and ↓ 14.4% compared to Mosaic and Suite2p UI designs, respectively (*F*[2, 12] = 15.91, *p* = 0.001)

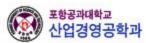
Comparison of O-BMI user interface designs in terms of scan-path length

Results: Perceived Cognitive Workload

- The new O-BMI UI design showed a lower perceived cognitive workload than the existing O-BMI UI designs in terms of mental demand, temporal demand, and effort.
 - ✓ Video acquisition task: O-BMI ☺ < Miniscope (12.2% ~ 28.9%); O-BMI ☺ < nVista (14.3% ~ 27.3%)
 - ✓ Signal extraction task: O-BMI ☺ < Mosaic (30.2% ~ 37.9%); O-BMI ☺ < Suite2p (24.0% ~ 30.2%)

Comparison of UI designs of O-BMI systems in terms of perceived cognitive workload

	Measure	Miniscope	nVista	New O-BMI	Test Statistic
Perceived cognitive workload	Mental demand	4.1 ± 0.4	4.2 ± 0.5	3.6 ± 0.7	F(2, 27) = 0.38
	Temporal demand	4.5 ± 0.4	4.4 ± 0.5	3.2 ± 0.5	F(2, 27) = 2.34
	Effort	4.2 ± 0.4	4.2 ± 0.5	3.4 ± 0.6	F(2, 27) = 0.83
		Sig	gnal extraction task		
	Measure	Mosaic	Suite2p	New O-BMI	Test Statistic
Perceived cognitive workload	Mental demand	5.3 ± 0.3 A	5.3 ± 0.4 A	3.7 ± 0.5 ^B	F(2, 27) = 4.77 *
	Temporal demand	5.8 ± 0.3 ^A	5.0 ± 0.5 AB	3.8 ± 0.6 ^B	F(2, 27) = 4.47 *
	Effort	5.8 ± 0.3	5.1 ± 0.4 AB	3.6 ± 0.6 B	F(2, 27) = 5.79 **

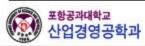

Video acquisition task

- The new O-BMI UI design displayed higher satisfaction than the existing O-BMI UI designs in terms of simplicity, distinctiveness, systematicity, accessibility, learnability, ease of use, and overall satisfaction.
 - ✓ Video acquisition task: O-BMI ☺ > Miniscope (20.8% ~ 47.5%); O-BMI ☺ < nVista (11.3% ~ 27.7%)

	Measure	Miniscope	nVista	New O-BMI	Test Statistic
Satisfaction	Simplicity	4.4 ± 0.5	4.5 ± 0.4	5.6 ± 0.3	F(2, 27) = 2.43
	Distinctiveness	4.0 ± 0.4 A	5.0 ± 0.4 AB	6.0 ± 0.2 B	F(2, 27) = 7.50 **
	Systematicity	4.0 ± 0.4 A	5.3 ± 0.4 AB	5.9 ± 0.3 ^B	F(2, 27) = 6.21 **
	Accessibility	4.8 ± 0.4	5.0 ± 0.3	5.8 ± 0.2	F(2, 27) = 2.59
	Learnability	5.0 ± 0.5	5.2 ± 0.3	6.0 ± 0.3	F(2, 27) = 2.01
	Ease of use	4.3 ± 0.6 A	4.7 ± 0.5 AB	6.0 ± 0.2 B	F(2, 27) = 3.80 *
	Overall satisfaction	4.3 ± 0.4 A	4.9 ± 0.3 AB	5.8 ± 0.3 ^B	F(2, 27) = 4.72 *

Video acquisition task

Comparison of UI designs of O-BMI systems in terms of satisfaction

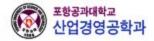

Results: Satisfaction

- The new O-BMI UI design displayed higher satisfaction than the existing O-BMI UI designs in terms of simplicity, distinctiveness, systematicity, accessibility, learnability, ease of use, and overall satisfaction.
 - ✓ Signal extraction task: O-BMI ☺ >Mosaic (42.5% ~ 74.3%); O-BMI ☺ < Suite2p (39.0% ~ 67.6%)

	Measure	Mosaic	Suite2p	New O-BMI	Test Statistic
Satisfaction	Simplicity	4.0 ± 0.4 A	3.7 ± 0.6 A	5.7 ± 0.3 ^B	F(2, 27) = 5.59 **
	Distinctiveness	3.9 ± 0.5 A	3.7 ± 0.7 A	6.2 ± 0.2 ^B	F(2, 27) = 7.38 **
	Systematicity	3.7 ± 0.4 A	4.1 ± 0.5 A	5.7 ± 0.2 ^B	F(2, 27) = 7.02 **
	Accessibility	3.3 ± 0.5 A	3.9 ± 0.5 A	5.6 ± 0.2 ^B	F(2, 27) = 7.48 **
	Learnability	3.4 ± 0.5 A	3.8 ± 0.6 A	5.9 ± 0.2 ^B	F(2, 27) = 7.28 **
	Ease of use	3.5 ± 0.5 A	4.2 ± 0.7 A	6.1 ± 0.2 ^B	F(2, 27) = 7.52 **
	Overall satisfaction	3.5 ± 0.5 A	4.0 ± 0.6 A	5.9 ± 0.1 ^B	F(2, 27) = 8.76 **

Comparison of UI designs of O-BMI systems in terms of satisfaction

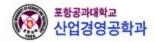
Signal extraction task



Discussion (1/2)

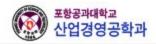
The usability testing results of the present study showed that the new proposed designs of (1) modularized structure UI, (2) task sequence-based UI, (3) adaptive and collapsible UI, and (4) integrated UI were effective for better usability for an O-BMI system.

A collapsible and expandable user interface for online processing (illustrated)


Home Acqu	uisition Off-line Process On-lin	e Process Decoding			
Scope Connect	▼ Motion Correction Crop Size: 150 ▼ px Preview Duration: 15 sec	Neuron Size: 100 Edge Shape: Round ⊽ Auto ROI	Location: x ⊕ y ⊕ Size(px) 100 ⊕ Style: Round ⊽	Add Transfrom Delete (A) (T) (D)	
 Disconnected 	Processing Option	ROI Selection	ROI Editing		
Home Acqu	uisition Off-line Process On-lin	e Process Decoding			
LE	D Power 100 Gain 100	Exposure 100 bps Frame rate 60 fps		Neuron Size: 100	
Scope Connect 0	100 0 100	0 100 10 15 20 30 40 50 60	Pre-	Neuron Size: 100 Edge Shape: Round ⊽ Auto ROI >	Real-time Process
	Scope Camera 🔵 Cor	nected	Processing Option	ROI Selection	

Discussion (2/2)

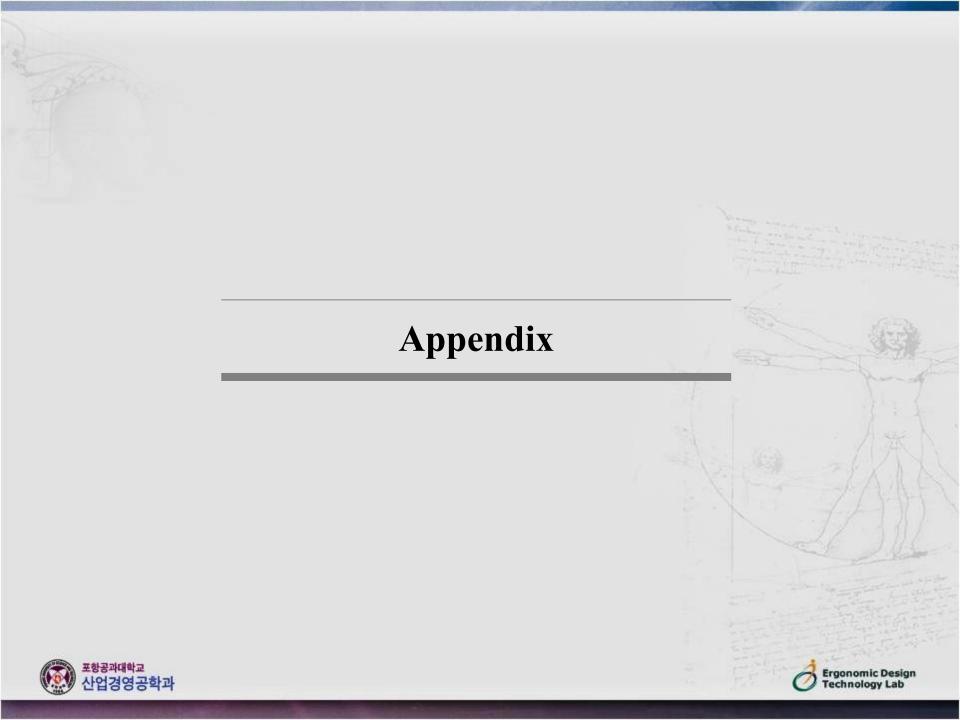
- The usability testing was conducted in the present study using both subjective and objective methods.
 - ✓ The O-BMI UI designs in the present study were compared by analyzing task completion times measured by a screen recording program and scan-path length data measured by an eye-tracking system as well as subjective evaluation scores obtained by a usability questionnaire.
 - The usability testing protocol of the present study can be used to design, evaluate, and improve UI designs of various systems in neuroscience research in the future.



Limitation & Future Work

Limitation

- ✓ Using the working digital prototypes, not real system (real system in developing)
- ✓ Testing with a small group of participants (n = 10)
- ☐ Future work
 - ✓ The usability results of the O-BMI UI designs using working digital prototypes need to be validated in the future with working O-BMI systems with a larger group of researchers in neuroscience.


경청해 주셔서 감사합니다.

본 연구는 양산부산대학교병원 (Pusan National University Yangsan Hospital) 의생명융합연구소의 인큐베이팅 연구과제의 지원을 받아 수행된 결과임

