

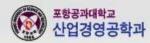
A Literature Review on Ergonomic Issues for Development of Non-Invasive Ventilation (NIV) Mask

비침습적 인공호흡기 마스크의 인간공학적 설계 및 평가 방법: 문헌 조사

최신아¹, 정하영¹, 이원섭², 허성철³, 김수연³, 김상훈⁴, 유희천¹

1포항공과대학교, 산업경영공학과 2한동대학교, 창업ICT융합학부 3양산부산대학교병원, 재활의학과 4부산대학교병원, 재활의학과

본 연구는 양산부산대학교병원 의생명융합연구소의 인큐베이팅 연구과제의 지원을 받아 수행된 결과입니다.


Global Contributor to Eco-Techno-Humanopia

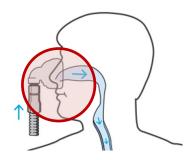
Contents

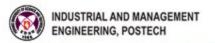
- Introduction
- Method
- Results
 - Facial Feature Analysis
 - ✤ Mask Interface Design
 - Usability Evaluation
- Discussion

Ergonomic Design Technology Lab

Non-Invasive Ventilation (NIV)

The non-invasive ventilation (NIV) is a therapy to manage respiratory depression & respiratory failure.


Respiratory depression due to collapses airway during sleep

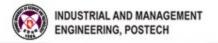

Respiratory failure due to neuromuscular disease

Non-Invasive ventilation Therapy

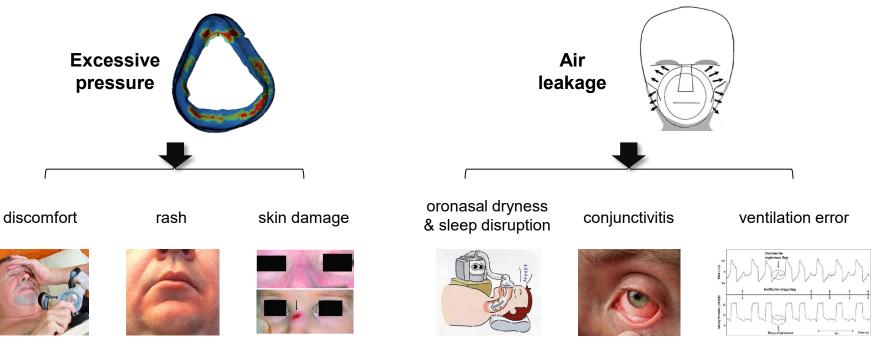
NIV Mask Interfaces

□ NIV mask interface is divided by face coverage area.

Full-Face Mask

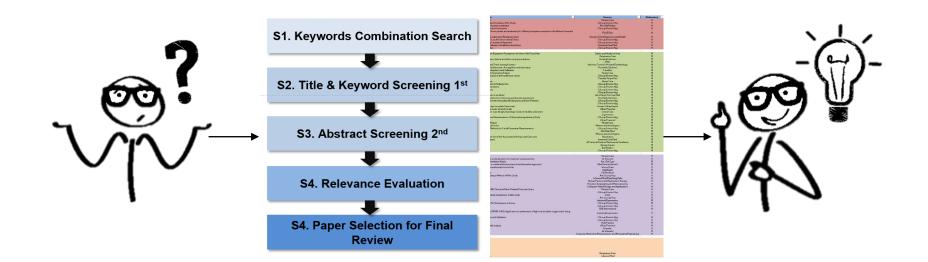

Oronasal Mask

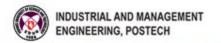
Nasal Mask


Oral mask

Mask Related Problems

❑ The shape of NIV mask interface is important for the comfort and safety of patients. Excessive pressure and air leakage caused by improper fit are the main reasons of NIV failure (5%-60% in critical patients).

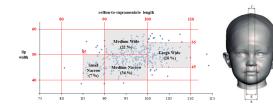


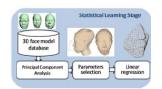

(BaHammam et al., 2017; Visscher et al., 2015; Barros et al., 2014)

Research Motivation

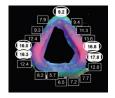
- Ergonomic studies of NIV mask development are needed to improve the fitness, solve the usability and safety problems of the NIV mask.
- Systematically organization of NIV mask development issues is needed.

Objective of the Study

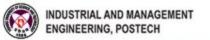

Systematically literature review on ergonomic issues for development of NIV mask


1. Facial feature analysis

- Facial dimensions important to mask design
- Measurement strategy
- Sizing system
- Generation of representative face models


2. Mask interface design

- Shape design method
- 3. Usability test
 - Subjective and objective evaluation
 - Virtual fit testing

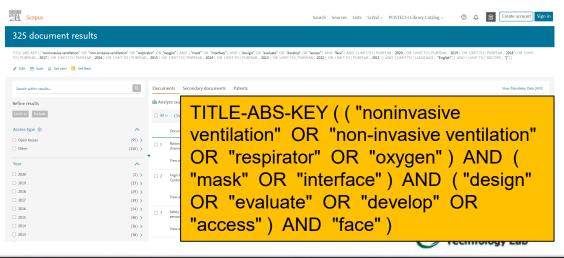


Literature Review: Search Method (1/3)

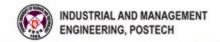
Source

> www.scopus.com

Scope

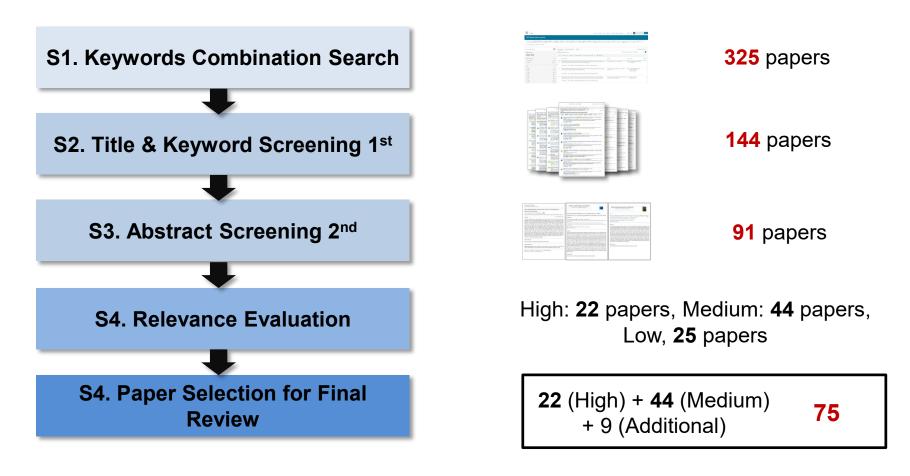

Search title, abstract, or auto-specified keywords

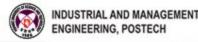
□ Keywords


Mask design and evaluation related: mask, interface, design, evaluate, noninvasive ventilation, respiratory, face

Selection criteria

- Year: within 10 years
- Source type: journals
- Language: English




Keywords Combination Search

Literature Review: Screening Process (2/3)

□ A total of **75** papers screened by title and abstract screening.

Literature Review: Paper List (3/3)

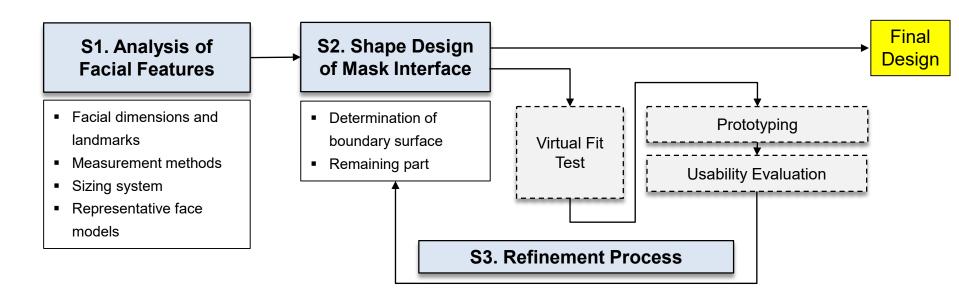
After checking the full text of each of the screened papers, a total of 35 papers (high: 24 papers; medium: 11 papers) were lastly cited in the present study.

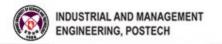
No.	Author(s)	Year	Title	Source	Relevancy		
1	Zhuang	2004	A Head and Face Anthropometric Survey of U.S. Respirator Users	Report (NIOSH)	H		
2	Zhuang et al.	2008	A New Approach to Developing Digital 3-D Headforms	SAE International	Н		
3	Yu et al.	2011	Digital 3-D Headforms Representative of Chinese Workers	Ann Occup Hyg	Н		
4	Lee et al.	2012	Analysis of the Facial Anthropometric Data of Korean Pilots for Oxygen Mask Design	Human Factors and Ergonomics Society	Н		
5	Amirav et al.	2013	Design of Aerosol Face Masks for Children Using Computerized 3D Face Analysis	J Aerosol Med Pulm Drug Deliv	Н		
6	Lee et al.	2013	Development of a Design Methodology of Pilot Oxygen Mask Using 3D Facial Scan Data	Doctoral Dissertation	Н		
7	Lee et al.	2013	Ergonomic Design and Evaluation of a Pilot Oxygen Mask	Human Factors and Ergonomics Society	Н		
8	Lee et al.	2014	Ergonomic Design and Evaluation of a Pilot Oxygen Mask for Korea Air Force Pilots	3D Body Scanning Technologies	Н		
9	Barros et al.	2014	Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis	J Bras Pneumol	н		
10	Chu et al.	2015	Design Customization of Respiratory Mask based on 3D Face Anthropometric Data	Precision Engineering and Manufacturing	Н		
11	Visscher et al.	2015	Face Masks for Noninvasive Ventilation: Fit, Excess Skin Hydration, and Pressure Ulcers	Respiry Care	н		
12	Luximon et al.	2016	A design and evaluation tool using 3D head templates	Computer-Aided Design and Applications	н		
13	Lee et al.	2017	A Shape based Sizing System for Facial Wearable Product Design	Applied Human Factors and Ergonomics	Н		
14	Lee et al.	2017	Analysis Methods of the Variation of Facial Size and Shape Based on 3D Scan Images	Human Factors and Ergonomics Society	Н		
15	Lee et al.	2017	Comparison of a Semiautomatic Protocol Using Plastering and Three-Dimensional Scanning Techniques with the Direct Measurement Protocol for Hand Anthropometry	Human Factors and Ergonomics in Manufacturing & Service Industries	н		
16	Manganyi et al.	2017	Quantitative Respirator Fit, Face Sizes, and Determinants of Fit in South African Diagnostic Laboratory Respirator Users	Annals of Work Exposures and Health	н		
17	Lee et al.	2018	A 3D Anthropometric Sizing Analysis System Based on North American CAESAR 3D Scan Data for Design of Head Wearable Products	Computers & Industrial Engineering	н		
18	Shikama et al.	2018	Development of Personalized Fitting Device With 3-Dimensional Solution for Prevention of NIV Oronasal Mask-Related Pressure Ulcers	Respiry Care	н		
19	Lee et al.	2018	Ergonomic evaluation of pilot oxygen mask designs	Appl Ergon	Н		
20	Makowski et.al	2019	Application of 3D scanning and 3D printing for designing and fabricating customized half-mask facepieces: A pilot study	Work	н		
21	Bader et al.	2019	Bioengineering considerations in the prevention of medical device-related pressure ulcers	Clin Biomech	н		
22	Lee et al.	2019	Development of a distributed representative human model generation and analysis system (DRHM-GAS): Application to optimization of flight suit and pilot oxygen mask sizing systems	Industrial Ergonomics	н		
23	Cohen et al.	2019	Dressings cut to shape alleviate facial tissue loads while using an oxygen mask	Int Wound J	Н		
24	Goto et al.	2019		International Journal of Industrial Ergonomics			
V ENGINEERING, POSTECH							

1118

Literature Review: Paper List (3/3)

 After checking the full text of each of the screened papers, a total of 35 papers (high: 24 papers; medium: 11 papers) were lastly cited in the present study.

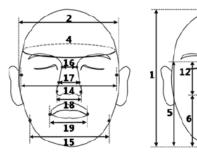

No.	Author(s)	Year	Title	Source	Relevancy
1	Ozsoy et al.	2009	Method selection in craniofacial measurements: Advantages and disadvantages of 3D digitization method	Cranio-Maxillofacial Surgery	М
2	Zhuang et al.	2010	Digital 3-D headforms with facial features representative of the current US workforce	J Occup Environ Hyg	М
3	Lee et al.	2013	Analysis of the facial measurements of Korean Air Force pilots for oxygen mask design	Ergonomics	М
4	Gutierrez et al.	2014	Designing an improved respirator for automotive painters	Industrial Ergonomics	М
5	Han et al.	2014	Development of Medium-size Half-mask Facepiece for Male Workers at a Shipyard and Its Fit Performance in Korea	J Occup Environ Hyg	М
6	Davidson et al.	2014	Performance Evaluation of Selected N95 Respirators and Surgical Masks When Challenged with Aerosolized Endospores and Inert Particles	J Occup Environ Hyg	М
7	Schallom et al.	2015	Pressure Ulcer Incidence In Patients Wearing Nasal-Oral Versus Full-Face Noninvasive Ventilation Masks	Am J Crit Care	М
8	Lee et al.	2016	Application of Massive 3D Head and Facial Scan Datasets in Ergonomic Head-Product Design	Digital Human	М
9	Worsley et al.	2016	Investigating the effects of strap tension during non-invasive ventilation mask application: a combined biomechanical and biomarker approach	Med Devices (Auckl)	М
10	Guha et al.	2016	Quantification of Leakage of Sub-Micron Aerosols through Surgical Masks and Facemasks for Pediatric Use	J Occup Environ Hyg	М
11	Hon et al.	2017	Comparison of qualitative and quantitative fit-testing results for three commonly used respirators in the healthcare sector	J Occup Environ Hyg	М

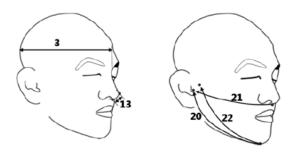


Ergonomic Mask Development: Overall Process

□ Three ergonomic steps contribute to mask fit improvement

- 1) Analysis of facial features
- 2) Shape design of mask interface
- 3) Refinement process by usability evaluation




S1. Anthropometric Analysis: Facial Dimensions & Landmarks

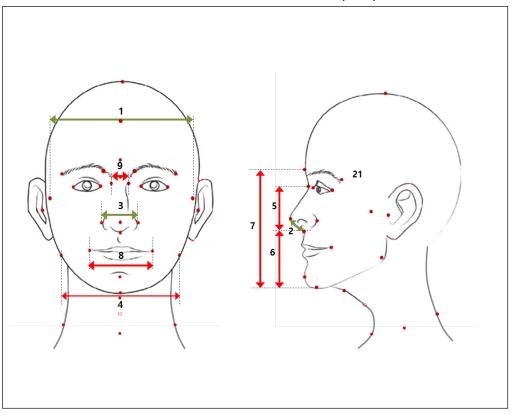
107 facial dimensions related to the design of a half-face mask were identified.
 22 facial dimensions were selected for the oxygen mask design for Air Force pilots (Lee et al., 2013).

Facial dimensions and landmarks (n=22)

No.	Facial Dimensions	Importance
1	head height	L
2	head breadth	L
3	head length	L
4	head circumference	L
5	face length	н
6	lower-face length	М
7	sellion-to-supramentale length	М
8	supramentale-to-menton length	L
9	rhinion-to-menton length	М
10	rhinion-to-promentale length	н
11	promentale-to-menton length	L

No.	Facial Dimensions	Importance
12	nose length	М
13	nose protrusion	М
14	face width	М
15	chin width	L
16	nasal root breadth	н
17	maximum nasal bridge breadth	н
18	nose width	н
19	lip width	н
20	bitragion-menton arc	L
21	bitragion-subnasale arc	L
22	bizygomatic-menton arc	L

(L: low; M: medium; H: high)


13

S1. Anthropometric Analysis: Facial Dimensions & Landmarks

9 highly featured facial dimensions for half-face mask design were identified in the present study.

No.	Facial Dimension	Usage Rate
1	face width	100.0%
2	nose protrusion	100.0%
3	nose width	83.3%
4	chin width	66.7%
5	nose length	66.7%
6	lower face length	66.7%
7	face length	66.7%
8	lip width	50.0%
9	nasal root breadth	50%

Facial dimensions and landmarks (n=9)

14

(Zhuang et al., 2008; Yu et al., 2012; Lee et al., 2013; Han et al.,2014; Gutierrez et al., 2014; Goto et al., 2015)

S1. Anthropometric Analysis: Measurement Methods

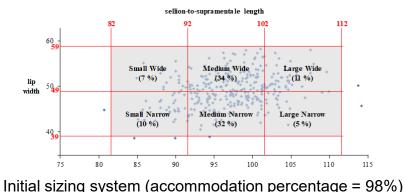
- □ Direct measurement, photogrammetry, and 3D scanning method (3D-SM) are used for anthropometric analysis.
- Existing studies selected the measurement method by considering the accuracy, efficiency of measurement, time, and cost.

Accuracy• Less accurate on soft tissue 	
Efficiency Low Low High	
Post Processing (Time demanding) - Normal Large	
Cost Low Low High	
Measurement Limitation - Inapplicable for the measurement of thickness, depth, and circumference dimensions -	
Availability of Post Measurement Inapplicable Applicable Inapplicable Inapplicable Available	ah

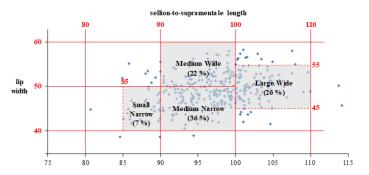
S1. Anthropometric Analysis: Sizing System (1/2)

- A sizing system is generated based on target accommodation percentage and key facial dimensions.
- □ In recent, shape-based sizing system is generated by machine learning technique.

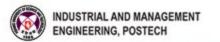
Consideration	Paper	Dataset	Dimensions	Method	Accommodation X-Category-sizin Percentage (rate)		y-sizing system	
	Luximon et al., 2016	144 Chinese adults Age 18-30	Head width	Percentile (5 th %tile, 50 th %tile, 95 th %tile)	100%	6 (2 genders× small/medium/larg e)	Average of the second s	
Variation of size	U U		1013 U.S.	10 dimensions (PCA)	PCA	95% (50%: medium; around 11% for rest categories)	5 (small/ medium/ large/ short/ long)	Short Juli 200 200 200 200 200 200 200 Preferences
	Lee et al., 2013	336 KAF pilots	18 dimensions (PCA)	Grid method	90%	4 (small narrow/ medium wide/ medium narrow/ large wide)		
Variation of size + shape	í Lichildren Ling i		Machine learning clustering (Self- Organizing Map)	4 (two shape- based clusters × two sizes)				
INDUSTRIA	INDUSTRIAL AND MANAGEMENT							



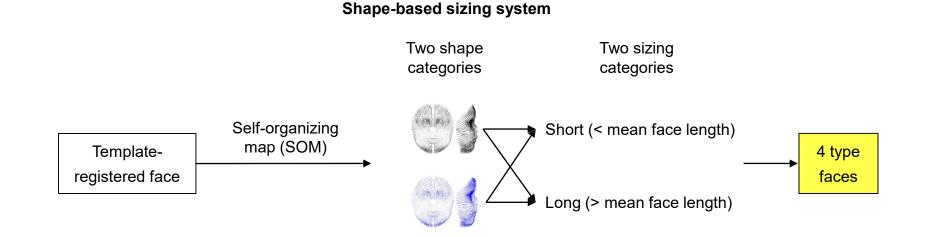
chnology Lab

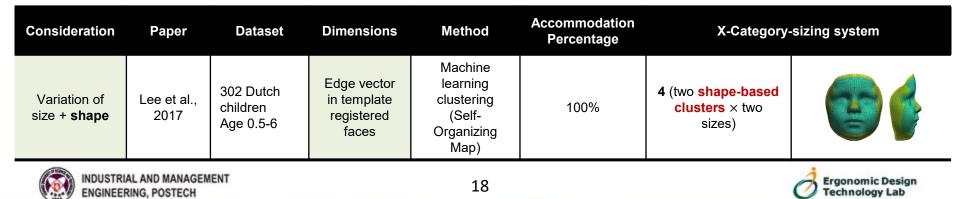

S1. Anthropometric Analysis: Sizing System (2/2)

A conventional sizing system can be generated by a decision masking process


- 1) Selection of target population
- 2) Selection of key anthropometric dimensions
- 3) Statistics for sizing system generation
- 4) Accommodation percentage
- 5) Number of sizing categories
- 6) Tolerance and manufacturing cost

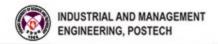
Grid Method


Final sizing system (accommodation percentage = 90%)



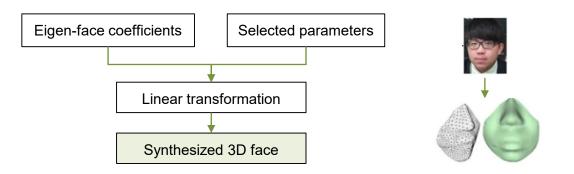
S1. Anthropometric Analysis: Sizing System (2/2)

PCA-based sizing system has still a lack of consideration about body shape.
 Generation of shape-based sizing system is developed by machine learning clustering method.



S1. Anthropometric Analysis: Representative Face Models (1/2)

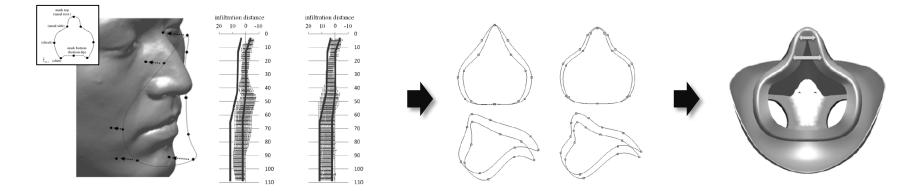
- Representative Face Models (RFMs) are generated based on the mean/medium values of key dimensions.
- □ 3D RFMs from sizing categories are used for facial mask designs and virtual fitting.


Paper	X-Category-sizing System	Representative Model Determination Method					
Zhuang et al. (2010)	5 (small/ medium/ large/ short/ long)	 5 subjects of each size category that are the closest to the computed means of the 10 dimensions Construct the averaged model (Polyworks) 					
Lee et al.(2013)	4 (small narrow/ medium wide/ medium narrow/ large wide)	Smallest weighted sum of Euclidean distance (WSED) based on the mean and medium values	rillin is separatelik length 10 10 10 10 10 10 10 10 10 10				

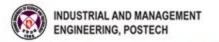
S1. Anthropometric Analysis: Customized Face Model (2/2)

□ In recent, customized face model (CFM) instead of RFM is generated for personalized mask interface design using machine learning technique.

Generation of customized face model


Paper	Customized Fa	ace Model
Chu et al. (2015)	 Machine learning based method Identify relevant parameters by AdaBoost Correlation between parameters were estimated using PCA and linear regression 	Statistical Learning Stage 3D face model database Principal Component Analysis Analysis Statistical Learning Stage Unit of the state of the s
ENGINEERING, POSTECH	20	C Technology Lab

Boundary surface of facial contact area is considered with high priority for mask design and virtual fitting evaluation.


Paper	ΤοοΙ	Method	
Chu et al. (2015)	CAD	Traced curve was generated on the face model by <u>3D projection</u>	
Luximon et al. (2015)	Solidworks	Tracing of 3D spline on the head template	
Amirav et al. (2015)	Solidworks	Hand draw according to the face contour	
Shikama et al. (2018)	Geomagic Sculpt 3D software	Subtract contact surface from the face and mask models	
Makowski et al. (2018)	Geomagic Freeform Plus software with haptic device	Draw based on the face models	
Lee et al. (2013)	Rhino 3D modeler	Generate new boundary by projection the existing design landmarks	

S2. Design Method: Mask Design (2/2)

Boundary surface can be generated and adjusted based on the shape of face models

Boundary adjustment progress

S3. Design Refinement by Subjective Evaluation (1/2)

Likert scale and visual analog scale (VAS) were used to measure subjective satisfaction (e.g., comfort/discomfort, overall satisfaction, and adequacy of fitness) in mask design evaluation.

Paper	Mask	Indicators	Method	Criteria			
Schallom et al. (2015)	Half-face mask Full-face mask	Comfort levels 5-point Likert scale		 1=comfortable with the NIV mask; 2=mild discomfort but will continue with the mask; 3=moderate discomfort but will continue with the mask 4=severe discomfort with the mask 5=very severe discomfort and need to discontinue use of the mask 			
Worsley et al. (2016)	Half-face mask	Discomfort	10-point visual analog scale	No Worst pain possible pain			
Luximon et al.	Holf face mook	Overall satisfaction	7-point Likert	 1=extremely unsatisfied 4=neutral 7= extremely satisfied 			
(2016)	Half-face mask	Regional fit (Adequacy of fitness)	scale questionnaire	 1=extremely tight 4=neutral 7=extremely loose 			

S3. Design Refinement by Subjective Evaluation (2/2)

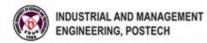
□ Fit assessment questionnaire in terms of discomfort level, leakage and overall satisfaction with different scales were developed.

Oxygen M	Evaluation Mask		 Existing Mask Revised Mask 						
 Check (√) how much you feel discomfort by facial area. 	Facial area	no discomfort 0	rare discomfort 1	somewhat discomfort 2	slight discomfort 3	moderate discomfort 4	quite discomfor 5	t very discomfort 6	extreme discomfort 7
nasal root	A: nasal root								
nasal side	B: nasal side								
	C: outer cheek								
C D inner D C	D: inner cheek								
ch eek outer cheek	E: bottom lip								
b ottom lip	F: chin								
F	overall discomfort								

Examples of subjective satisfaction evaluation questionnaire

Paper	Mask	Indicators	Method	Criteria
Lee et al.(2013)	Pilot oxygen mask (half-face mask)	Discomfort level caused by contact pressure	Fit account	 0=no discomfort, 1=rarely discomfort 4=moderate discomfort, 7= extreme discomfort
		oxygen mask face mask) Oxygen leakage questionna	Fit assessment questionnaire (7-point scale)	 0=no leakage, 1=rare leakage, 4=moderate leakage, 7= extreme leakage
		Overall satisfaction	(, , , , , , , , , , , , , , , , , , ,	 -3=very unsatisfied 0=neutral 3=very satisfied

S3. Design Refinement by Objective Evaluation


Quantitative fitness was measured by objective measures such as air leakage, pressure, skin condition, and inflammatory biomarker.

Paper	Method	Apparatus	Analysis	Result	
Davidson et al., 2013; Guha et al., 2016; Hon et al., 2017; Manganyi et al., 2017;	Air leakage detection	TSI Portacount Model 8038	 Aerosol concentrations outside and inside the respirator 		
Lee et al., 2018	Pressure	Prescale™ pressure indicating film (Fujifilm Co., Japan) Scanner	 Intensity of the color → level of contact pressure 		
Shikama et al., 2018; Cohen et al., 2019	measurement	Sensor, 0.2mm (Flexi Force, Japan)	 The distribution of proportion among the 12 sensors A smaller value → a more even redistribution of contact pressure on the face 		
Shikama et al., (2018); Visscher et al., 2015	Skin condition	Nikon D-90 camera	 Red (a*) image as percentage of red pixels above the mean plus 1 SD (μ + σ) threshold Large percentage → the presence and degree of skin compromise 		
Worsley et al., 2016	Inflammatory biomarkers	Sebutape (CuDerm, USA)	 Inflammatory cytokine, IL-1α IL-1α increase → high pressure and shear 	Sebutape Readings	

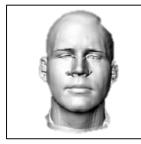
S3. Design Refinement by Virtual Fit Testing (1/2)

Virtual fit testing offers quick validation with low cost and less time consuming, and avoids the potential harm to the participants in experimental evaluation.

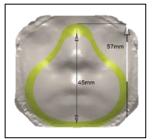
Paper	Indicator	Method	
Chu et al., 2015; Luximon et al., 2016	Geometric Similarity	 Calculate the space between the mask boundary and its projected contour on the face model Visual evaluation by drag- and-drop and semi- transparent state operations 	$ \begin{array}{c} (a) \\ (b) \\ (c) $
Visscher et al., 2015; Shikama et al., 2018	Distance	Calculate the distance between mask and face models	
Barros et al., 2014; Bader et al., 2019; Lee et al., 2019	Pressure	Finite element modeling (FEM) Finite element analysis (FEA)	

S3. Design Refinement by Virtual Fit Testing (2/2)

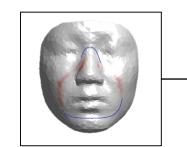
□ Anatomical properties are applied to FE models.


Model component	Shear modulus (MPa)	Bulk modulus (MPa)	Elastic modulus (MPa)	Poisson's ratio	Number of mesh elements
Skin ^a	0.031900	3.1794	-	-	125 826
Fat ^{b,c}	0.000286	0.0285	-	-	342 692
Skull ^d	-	-	6483.6	0.495	159 528
Vertebrae ^e	-	-	10 000	0.29	37 253
Ventilation mask	-	-	0.12	0.49	13 700
Mepilex Lite dressings cut-to-shape	-	-	0.02675	0.258	16 490

Mechanical properties and element data

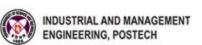

Paper	Indicator	Method	
Cohen et al., 2019	Effective stress	 Computational modelling (FE modeling) Tissue with mechanical property (from animal study) 	(Å) 2.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
ENGINEERING, POSTECH			Technology Lab

Discussion (1/2)


- The issues organized in 3 categories should be considered for better fit NIV mask
 - Key facial dimensions, measurement strategies, sizing methods and representative models
 - Shape design method
 - Virtual testing, subjective evaluation and objective evaluation methods

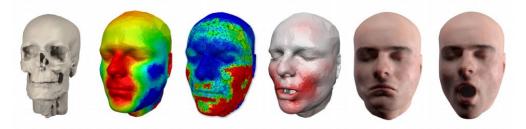
Facial feature analysis

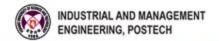
Mask interface design



Usability test

Better fit NIV mask

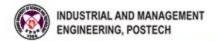

28


Mask Development Process

Discussion (2/2)

- The importance of representative face models can decrease in ergonomic design and virtual fit testing.
- A customized mask is necessary to be developed for the safety and effectiveness of NIV treatment.
 - > An ergonomic design algorithm that identifies an optimal NIV mask design
 - An ergonomic design tuning (adapter) algorithms
 - An ergonomic selection algorithm
- Digital face model with human anatomy features need to be apply to virtual fit testing.

Examples of Deformable Digital Face Model (Kadlecek and Kavan., 2019)



경청해 주셔서 감사합니다.

본 연구는 양산부산대학교병원 의생명융합연구소의 인큐베이팅 연구과제의 지원을 받아 수행된 결과입니다.

