초음파 도플러 센서 기반 삼킴 모니터링 및 분석 시스템 개발

최영근¹, 김민재¹, 이백희², Xiaopeng Yang³, 김진원¹, 권도훈¹, 이상억⁴, 김향희⁵, 남석인⁶, 홍세원⁷, 양길태⁸, 나덕렬⁹, 유희천¹

¹포항공과대학교 산업경영공학과 ²현대자동차 Body Test Team 3 ³장난대학교 인공지능 컴퓨터 공학과 ⁴에스포항병원 재활의학과 ⁵연세대학교 대학원 언어병리학협동과정 ⁶연세대학교 사회복지학과 ⁷디지털에코 연구개발팀 ⁸시드테크 연구개발팀 ⁹삼성서울병원 신경과

Development of an Ultrasonic Doppler Sensor-Based

Swallowing Monitoring and Assessment System

Younggeun Choi¹, Minjae Kim¹, Baekhee Lee², Xiaopeng Yang³, Jinwon Kim¹, Dohoon Kwon¹, Sang-Eok Lee⁴, HyangHee Kim⁵, Seok In Nam⁶, Saewon Hong⁷, Giltae Yang⁸, Duk L. Na⁹, Heecheon You¹

 ¹Department of Industrial and Management Engineering, Pohang University of Science and Technology
²Body Test Team 3, Hyundai Motor Company
³School of Artificial Intelligence and Computer Science, Jiangnan University
⁴Department of Rehabilitation Medicine, Pohang Stroke and Spine Hospital
⁵Graduate Program in Speech-Language Pathology, Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine
⁶Graduate School of Social Welfare, Yonsei University
⁷R&D Research Team, Digital Echo Co.
⁸R&D Research Team, SEED Tech. Co.

ABSTRACT

Objective: The aim of this study is to develop a swallowing monitoring and assessment system (SMAS) that is nonintrusive and quantitative. **Background:** Existing methods for swallowing evaluation using X-ray or endoscopy are intrusive and qualitative. **Method:** The SMAS was developed comprising an ultrasonic Doppler sensor array, a microphone, and an inertial measurement unit to collect ultrasound signals only from swallowing activities. Ultrasound signals were measured for combinations of two types of liquid (water and yogurt) and two different volumes (3 mL and 9 mL) from 24 healthy participants (14 males and 10 females; age = 30.5 ± 7.6 years) and were quantified for 1st peak amplitude, 2nd peak amplitude, peak-to-peak (PP) time interval, duration, energy, and proportion of two or more peaks. **Results:** The peak amplitudes and energy significantly decreased by viscosity of liquid and the PP time interval and duration increased by

volume. The correlation between the time measures were higher (r = 0.78) than that of the amplitude measures (r = 0.30), and the energy highly correlated with the 1st peak amplitude (r = 0.86). The proportion of two or more peaks varied from 76.8% to 87.9% by viscosity of liquid and volume. **Application:** The SMAS would be useful for early detection of swallowing disorder once concurrent validity and generalizability are examined.

Keywords: swallowing; assessment; ultrasonic Doppler sensor; quantification; correlation

Corresponding author: Heecheon You (hcyou@postech.ac.kr)

Acknowledgements : This research was jointly supported by the research programs of the National Research Foundation (NRF) of the Ministry of Education, Science and Technology (2017M3C1B6070526; 2018R1A2A2A05023299; 2018K1A3A1A20026539), the Ministry of Trade, Industry, and Energy (R0004840, 2020), the Biomedical Research Institute of Chonbuk National University Hospital, and the Korean Health Technology R&D Project, Ministry of Health &Welfare, Republic of Korea (HI10C0626).