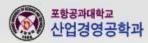


Estimation of Finger Joint Center of Rotation Using Finger Motion

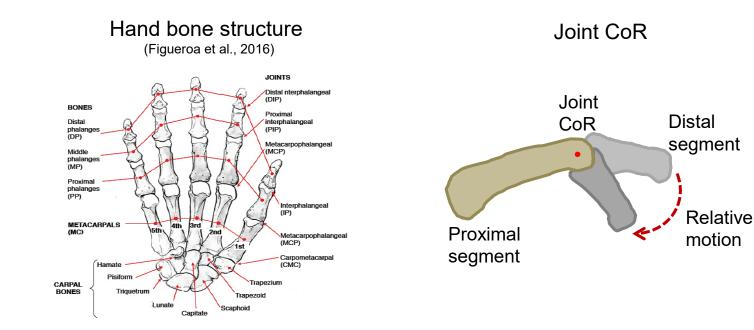
Zhichan Lim, Xiaopeng Yang, Hayoung Jung, Heecheon You

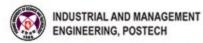
Department of Industrial & Management Engineering, Pohang University of Science and Technology, Korea


Global Contributor to Eco-Techno-Humanopia

CONTENTS

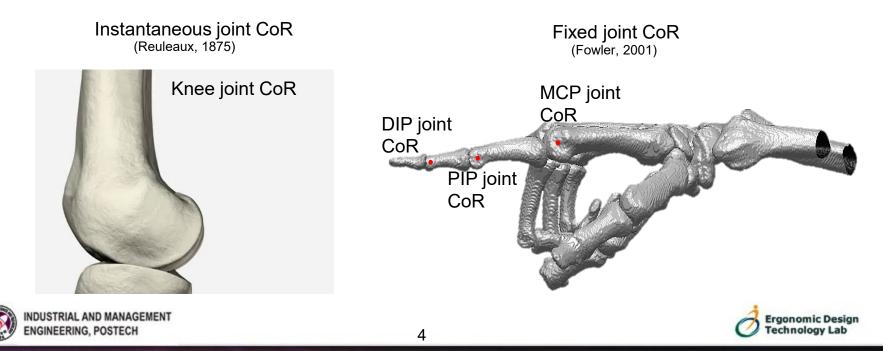
- Introduction
 - Background
 - Objectives of the Study
- CT-Based Center of Rotation (CoR) Estimation


Ergonomic Design Technology Lab

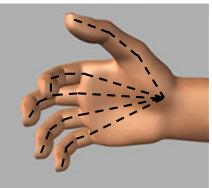

- Discussion
- Limitation and Future Study

Hand Anatomy

- Hand bone structure: Containing 29 bones at the wrist and fingers
- Joint CoR: The center around which the relative motion of a joint's distal segment occurs

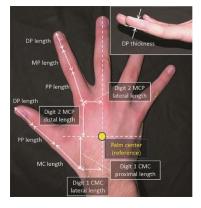


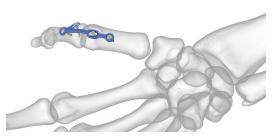
Types of Joint CoR


- Instantaneous joint CoR
 - The joint CoR around which the distal segment moves at certain instant of time from the starting position to the ending position (Challis, 2001)
- Fixed joint CoR
 - No change of Joint CoR location during motion
 - Hand joints: Assumed to have fixed joint CoR in previous studies (Zatsiorsky, 1998)

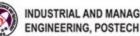
Applications of Finger Joint CoR

- Hand animation, hand posture recognition
- Ergonomic product designs
- Clinical assessment for hand surgery

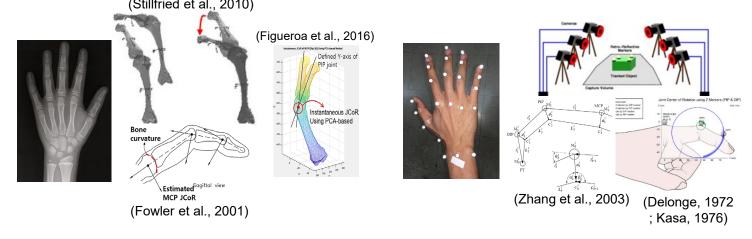

Posture visualization & recognition

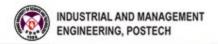


Ergonomic product design

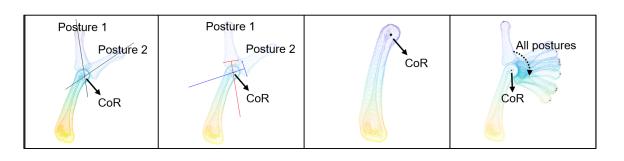


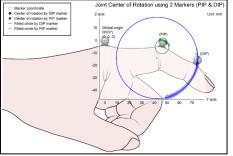
Post-operative medical evaluation

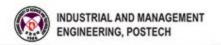




Existing Methods of Joint CoR Estimation

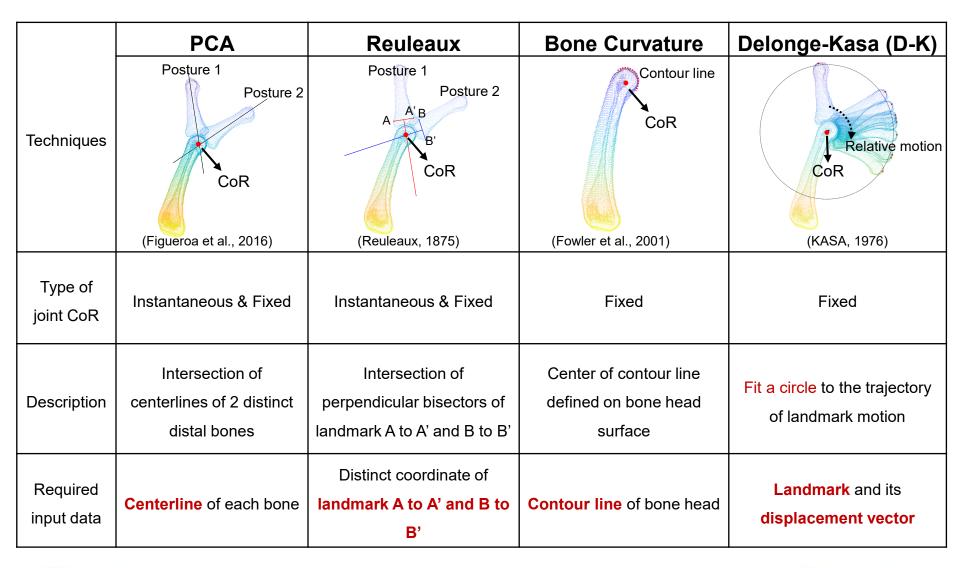

Data typeMedical images data (MRI/CT)Surface motion dataTechniquesReuleaux, bone curvature, PCACircle fitting, optimizationStrengthsEasy to visualize position of joint CoR Accurate joint CoREasy to collect data Cost-effective SafeLimitationsExpensive Risk of exposure to ionizing radiation Difficult to collect data Complex calculationLess accurate Existing techniques not validated Complex calculation	Туре	Skeleton-based Estimation	Surface-based Estimation
Strengths • Easy to visualize position of joint CoR • Accurate joint CoR • Accurate joint CoR • Expensive • Risk of exposure to ionizing radiation • Difficult to collect data • Difficult to collect data • Complex calculation • Complex calculation	Data type	Medical images data (MRI/CT)	Surface motion data
 Strengths Easy to Visualize position of joint CoR Accurate joint CoR Cost-effective Safe Expensive Risk of exposure to ionizing radiation Difficult to collect data Limitations 	Techniques	Reuleaux, bone curvature, PCA	Circle fitting, optimization
 Risk of exposure to ionizing radiation Difficult to collect data Complex calculation 	Strengths	· · · ·	Cost-effective
Long data processing	Limitations	Risk of exposure to ionizing radiation	 Existing techniques not validated



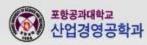


Objectives

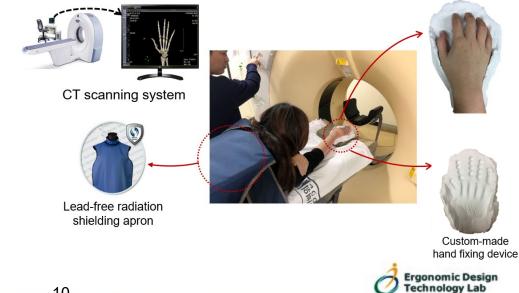
Compare different CT-based joint CoR estimation techniques and identify those techniques provide similar results



CT-Based Joint CoR Estimation: Techniques

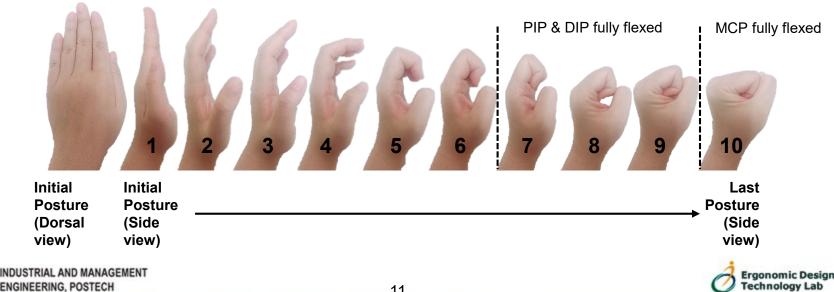


Data Collection and Pre-Processing


Ergonomic Design Technology Lab

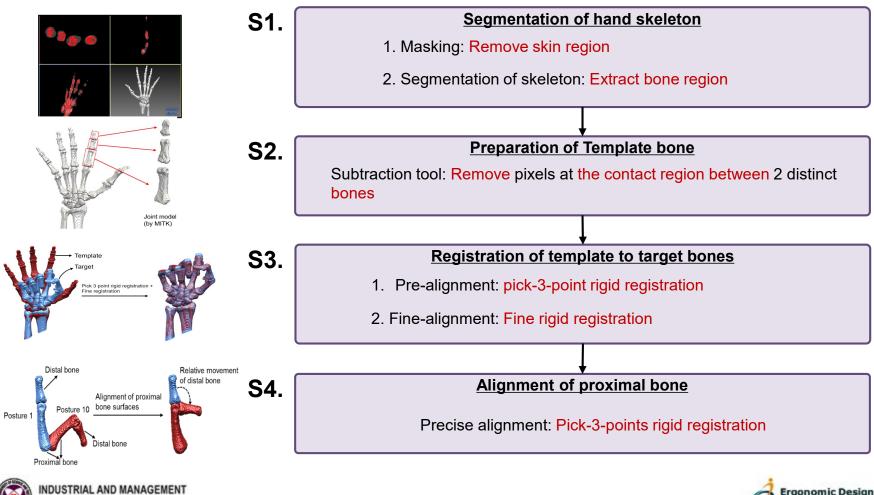
Experiment

- 9 participants
 - No neurological or musculoskeletal disorder in dominant hand
 - 3 hand size categories (Size Korea, 2010)
 - Large: > 188.5 mm
 - Medium: 178.3 ~ 188.4 mm
 - Small: < 178.2 mm
- Apparatus
 - CT scanning system
 - Custom-made hand fixing device
 - Radiation shielding apron



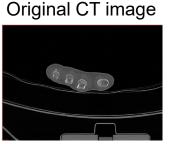
Experiment Protocol

- 2. Main experiment
- Fix hand and each posture (10 postures) at the fixing device • CT scan of each hand posture •


3. Debriefing

CT Data Pre-Processing

Reconstruct the 3D skeletal models of different postures that share the same bone


surface



S1. Segmentation of Hand Skeleton

- 2-step procedure for segmentation of hand skeleton from CT images
 - S1: Masking
 - Exclude the skin region using a 3D sphere tool of Dr.Liver

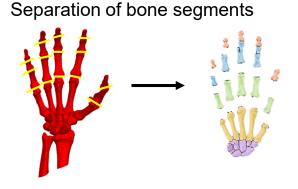
Masked CT image

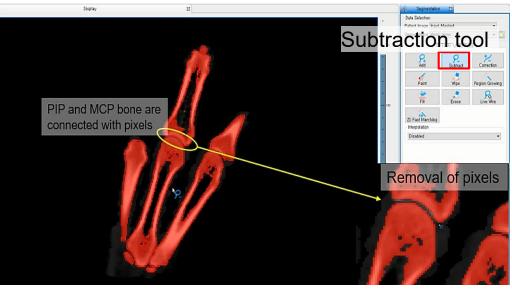
- S2: Segmentation
 - Extract the skeleton region using

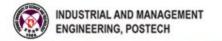
 a threshold-based technique of
 MITK by manually adjust
 threshold value

Threshold selection

Threshold : 74 S Confirm Segmentation Threshold ULTrreshold East Marching 3D Region Growing 3D Watershed

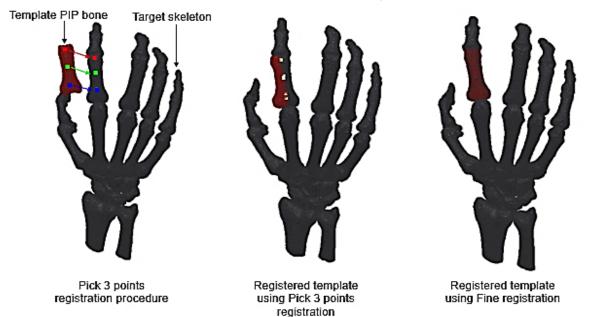

Segmented bone

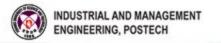



S2. Preparation of Template Bone

- 2-step procedure for extraction of the bone segments from one skeleton model as template bone
 - S1: Select the skeleton at the initial posture
 - S2: Remove the connected pixels between 2 bone segments using a subtraction tool of MITK

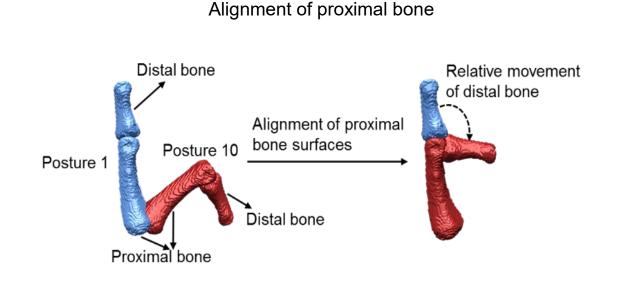
Subtraction Tool by MITK

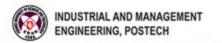




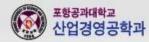
S3. Registration of Template to Target Bones

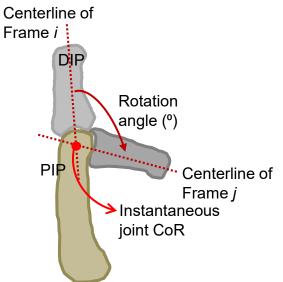
- 2-step procedure for template bone alignment
 - S1: Pre-alignment by the Pick-3-Point rigid registration tool of RapidForm 2006
 - S2: Fine-alignment by the Fine rigid registration tool of RapidForm 2006


Example of template bone alignment



S4. Alignment of Proximal Bone


 Align the proximal bone segments of all postures to examine the motion of distal bone segments using Pick-3-Point rigid registration tool of RapidForm 2006

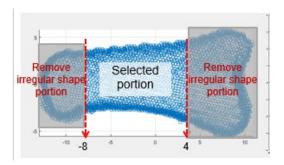

CT-Based Instantaneous Joint CoR Estimation

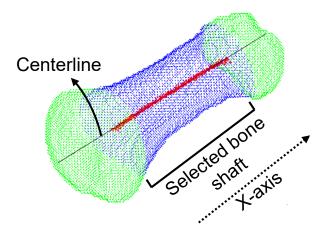
Instantaneous Joint CoR Estimation: PCA

- Principal Component Analysis (PCA method)
 - Estimates instantaneous joint CoR between 2 postures using bone centerlines
 - Steps
 - S1. Determine the centerline of the distal segment at each posture
 - S2. Find the intersection point between the centerlines of the distal segment at 2 different postures

Rosemarie Figueroa 1, T. J. (2016). DETERMINING INSTANTANEOUS CENTERS OF ROTATION FOR FINGER JOINTS THROUGH DIFFERENT POSTURES USING THE ITERATIVE CLOSEST POINT ALGORITHM (ICP). Proceedings of the Human Factors and Ergonomics Society, 1470-1474.

S1. Centerline of Bone (2/2)

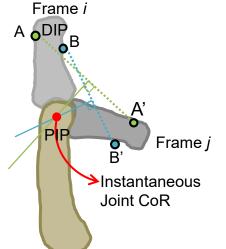

1. Reduce dimensionality of bone using PCA


· Remove irregular bone regions at the

extreme sides of the bone for bone shaft

- Principle component 1 \rightarrow X-data
- Principle component 2 \rightarrow Y-data
- Principle component 3 \rightarrow Z-data

Encode to axis year of the set of the set

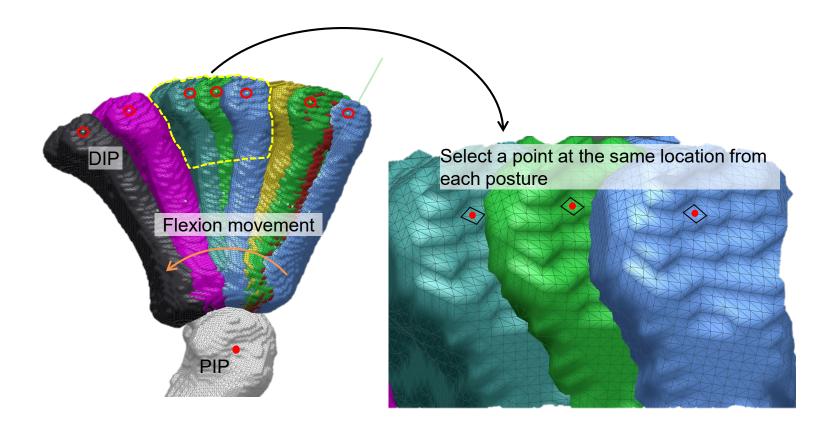

3. Identify a centerline

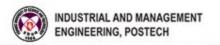
2. Select a bone shaft

- Find the centroid of each YZ plane along xaxis perpendicular to the bone shaft
- Linearly fit a line which passes through the centroids along x-axis

Instantaneous Joint CoR Estimation: Reuleaux

- Reuleaux method
 - Estimate an instantaneous joint CoR from 2 postures using the displacement vectors of 2 landmarks
 - S1. Select landmarks A and B and their displacement vectors
 - S2. Find an intersection point between the perpendicular bisectors of the 2 landmarks

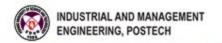

- Challis, J. H. (2001). Estimation of the finite center of rotation in planar movements. Medical Engineering & Physics, 23, 227-233.
- Silmara Nicolau Pedro da Silva, R. M. (2005). Measurement of the flexing force of the fingers by a dynamic splint with a dynamometer. CLINICS, 60(5), 381-388.
- Reuleaux, F. (1875). Theretische Kinematik. Braunschweig.



INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

S1. Select Landmark (2/2)

 Select a point using RapidForm from each posture at the same location of the bone surface data as landmark


Measures of Joint CoR Estimation Method

- Consistency
 - Measured using mean distance between CoRs (mm)

Mean distance (MD),
$$mm = \frac{\sum_{i=1}^{N} \sum_{i\neq j}^{N} |X_i - X_j|^2}{C_N^2}$$

Wean distance from Consistency

- Variability
 - Measured using standard error (mm)

Standard error,
$$mm = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{n-1}}$$
 Standard error Variability

Results

 96% of joints were significantly different in consistency between PCA method and Reuleaux method (*p* < 0.001) for majority of joints based on paired t-test.

Hand size:

P

Large

1		P-Value of	P4		
	Finger		Realeaux		
		MCP			
	Index	p < 0.0005	p < 0.0005	p < 0.0005	
	Middle	p < 0.0005	p < 0.0005	<i>p</i> = 0.003	
	Ring	p < 0.0005	p < 0.0005	p < 0.0005	
	Little	p < 0.0005			

P2	Finger	P-Value of Paired T-test of PCA wi Realeaux		P5	
		MCP	PIP	DIP	
	Index	p < 0.0005	<i>p</i> = 0.003	p = 0.059	
	Middle	p < 0.0005	p < 0.0005	p < 0.0005	
	Ring	p < 0.0005	p < 0.0005	p < 0.0005	
	Little	p < 0.0005	p < 0.0005	p < 0.0005	

P3

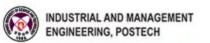
	P-Value of Paired T-test of PCA with				
Finger		10			
	MCP	PIP	DIP		
Index	p < 0.0005	p < 0.0005	p < 0.0005		
Middle	<i>p</i> < 0.0005	p = 0.162	<i>p</i> < 0.0005		
Ring	p < 0.0005	p = 0.029	p < 0.0005		
Little	<i>p</i> < 0.0005	p < 0.0005	p < 0.0005		

Medium

	P-Value of Paired T-test of PCA with				
Finger	Realeaux				
	MCP PIP DIP				
Index	p < 0.0005	p < 0.0005	<i>p</i> < 0.0005		
Middle	<i>p</i> < 0.0005 <i>p</i> < 0.0005 <i>p</i> < 0.0005				
Ring	p = 0.008	p < 0.0005	<i>p</i> < 0.0005		
Little	p < 0.0005 $p < 0.0005$ $p < 0.0005$				

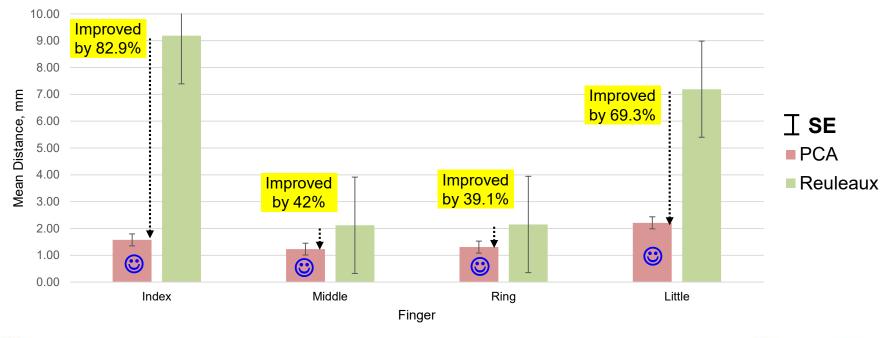
	P-Value of Paired T-test of PCA with			
Finger	ger Realeaux			
	MCP	PIP	DIP	
Index	p < 0.0005	p < 0.0005	p < 0.0005	
Middle	p < 0.0005	p < 0.0005	p = 0.995	
Ring	p < 0.0005	p < 0.0005	p < 0.0005	
Little	p < 0.0005	p < 0.0005	p < 0.0005	

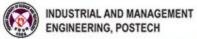
	P-Value of Paired T-test of PCA with			
Finger		Realeaux		
	MCP	DIP		
Index	p < 0.0005	p < 0.0005	p < 0.0005	
Middle	p < 0.0005	<i>p</i> = 0.009	p < 0.0005	
Ring	p < 0.0005	p < 0.0005	p < 0.0005	
Little	p < 0.0005	p < 0.0005	p < 0.0005	


Small

P7	Finger	P-Value of Paired T-test of PCA with Realeaux			
		MCP	DIP		
	Index	<i>p</i> < 0.0005 <i>p</i> < 0.0005		p < 0.0005	
	Middle	<i>p</i> < 0.0005 <i>p</i> < 0.0005		p < 0.0005	
	Ring	p < 0.0005	p < 0.0005	p = 0.002	
	Little	p < 0.0005	p < 0.0005		

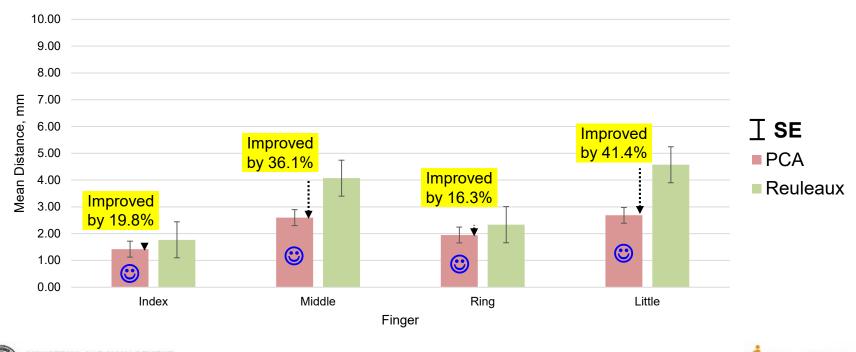
P8	Finger	P-Value of Paired T-test of PCA with Realeaux		
		MCP	DIP	
	Index	<i>p</i> < 0.0005 <i>p</i> < 0.0005		p < 0.0005
	Middle	p < 0.0005 $p = 0.404$		p < 0.0005
	Ring	p < 0.0005	p < 0.0005	p < 0.0005
	Little	<i>p</i> < 0.0005	p < 0.0005	p < 0.0005


P9	Finger	P-Value of Paired T-test of PCA with Realeaux			
		MCP PIP DIP			
	Index	<i>p</i> < 0.0005 <i>p</i> < 0.0005		<i>p</i> < 0.0005	
	Middle	<i>p</i> = 0.003 <i>p</i> < 0.0005		<i>p</i> < 0.0005	
	Ring	p < 0.0005	p < 0.0005	<i>p</i> < 0.0005	
	Little	p < 0.0005	p < 0.0005	p = 0.169	



Consistency of Instantaneous CoR: MCP Joint

 PCA method provided more consistent and less variability results (MD = 1.57±0.52 for index, 1.23±0.84 for middle, 2.12±0.82 for ring, 2.21±1.18 mm for little fingers)

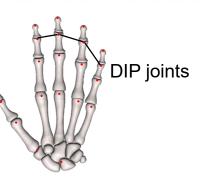

Mean Distance between Estimated Instantaneous MCP Joint CoRs

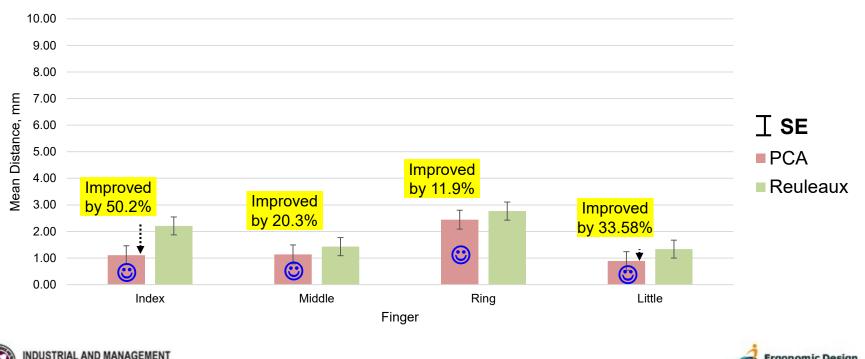
MCP joints

Consistency of Instantaneous CoR: PIP Joint

 PCA method provided more consistent and less variability results (MD = 1.42±0.85 for index, 2.60± 2.07 for middle, 1.95±1.26 for ring, 2.68±2.46 mm for little fingers)

Mean Distance between Estimated Instantaneous PIP Joint CoRs

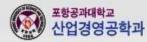

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH



PIP joints

Consistency of Instantaneous CoR: DIP Joint

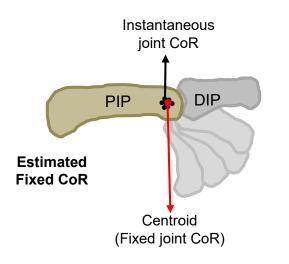
 PCA method provided more consistent and less variability results (MD = 1.10±0.53 for index, 1.14±0.51 for middle, 2.44±3.07 for ring, 0.89±0.51 mm for little fingers)



26

Mean Distance between Estimated Instantaneous DIP Joint CoRs

INDUSTRIAL AND MANAG ENGINEERING, POSTECH


CT-Based Fixed Joint CoR Estimation

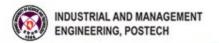
Fixed Joint CoR Estimation: K-means Clustering

- K-means clustering method
 - Estimate a centroid from a group of estimated instantaneous joint CoRs as fixed
 CoR using K-means clustering technique (K = 1)

K-means technique:

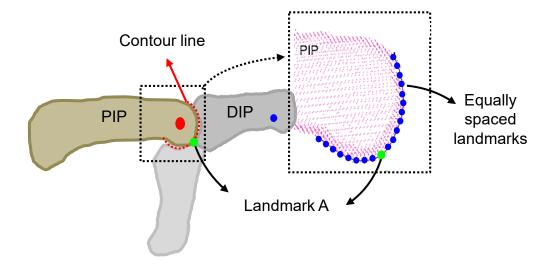
Minimize the squared error function

$$J(V) = \sum_{i=1}^{k} \sum_{j=1}^{K_i} (\|X_i - V_j\|)^2$$


 K_i = the number of data points in i^{th} case

k = 1 which is the number of cluster centers

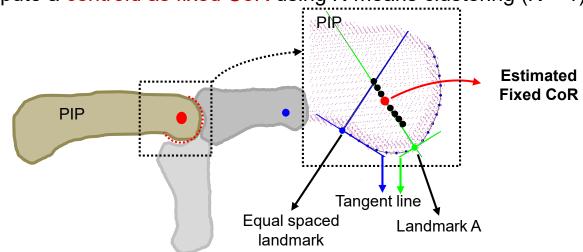
 V_j = the centroid for cluster *j*


 $||X_i - V_j|| =$ the distance between 2 n-dimensional data points, X_i, V_j

Fixed Joint CoR Estimation: Bone Curvature (1/2)

- Bone curvature method
 - Estimate the fixed joint CoR from the center of the curvature of bone head
 - Steps
 - S1. Define a contour line of the bone head, landmark A (point that has the highest curvature on the contour), equally spaced landmarks along the contour

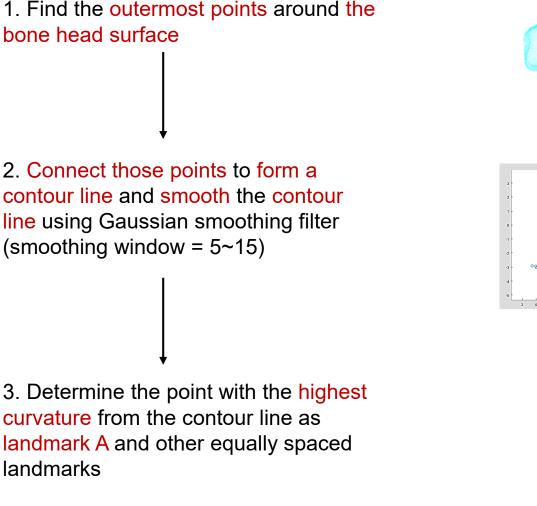
N.K. Fowler, A. N. (2001). Method of determination of three dimensional index finger moment arms and tendon lines of action using high resolution MRI scans. Journal of Biomechanics, 34, 791-797.

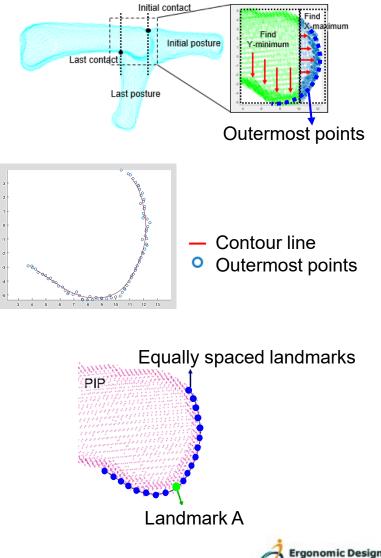


INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

Fixed Joint CoR Estimation: Bone Curvature (2/2)

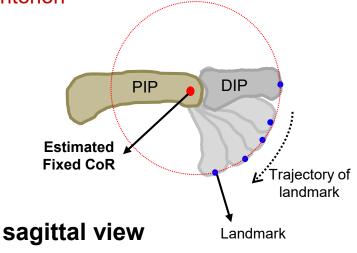
- Steps (cont.)
 - S2. Draw tangent lines that passing through the landmark A and an equal spaced landmark
 - S3. Draw the normal of the tangent lines
 - S4. Find an intersection point between the normal lines
 - S5. Compute a centroid as fixed CoR using K-means clustering (K = 1)


N.K. Fowler, A. N. (2001). Method of determination of three dimensional index finger moment arms and tendon lines of action using high resolution MRI scans. Journal of Biomechanics, 34, 791-797.



INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH

S1. Define Contour Line and Landmarks (3/3)



chnology Lab

Fixed Joint CoR Estimation: D-K Method

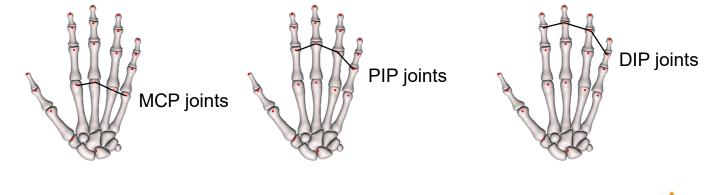
- **D-K** method
 - Estimate a fixed joint CoR from the trajectory of a landmark
 - Steps
 - S1. Select a landmark from each posture at the same position of bone surface data
 - S2. Fit a circle to the trajectory of the landmark by minimizing the least square error criterion

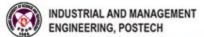
KASA. (1976). A Circle Fitting Procedure and Its Error Analysis. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 8-14.

INDUSTRIAL AND MANAGEMENT ENGINEERING, POSTECH Least square error criterion:

$$Min \sum_{i=1}^{N} (R_i - R)^2$$

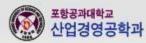
* Where $R_i = (x_i - A)^2 + (y_i - B)^2$ $(x_i, y_i) =$ Marker locations (A, B) = Calculated joint CoR R = Radius of the fitted circle over the trajectory of marker motion



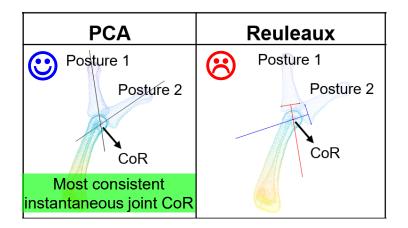

Consistency of Fixed CoR: Summary

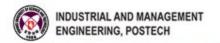
Review of methods that provide the most consistent fixed joint CoR

	Index	Middle	Ring	Little
MCP	D-K	Reuleaux	D-K	PCA
	(1.80±0.84)	(1.08 ± 0.25)	(1.28±0.49)	(1.37 ± 0.45)
PIP	D-K	D-K	Reuleaux	D-K
	(0.41±0.20)	(0.40±0.15)	(0.45 ± 0.23)	(0.47±0.28)
DIP	D-K	Reuleaux	D-K	D-K
	(0.52 ± 0.14)	(0.65 ± 0.21)	(0.45 ± 0.23)	(0.33 ± 0.11)


Estimated fixed joint CoR by Delonge-Kasa (D-K) is selected as reference CoR and used to validate motion-based joint CoR

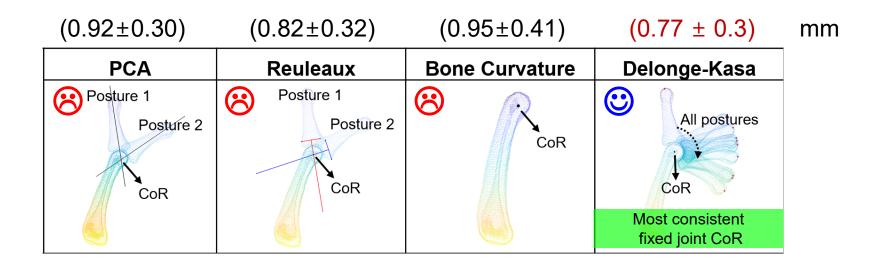
I Init mm

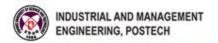

Discussion



CT-based Joint CoR Estimation (1/2)

- Compared the instantaneous joint CoR estimation methods: PCA and Reuleaux
 - PCA (1.71±0.84) > Reuleaux (3.43±3.86) in terms of the mean consistency and variability of CoR
 - MCP: 58.3% higher (Variability: 82.4% lower)
 - PIP: 28.4% higher (Variability: 61.5% lower)
 - DIP: 29% higher (Variability: 30.0% lower)



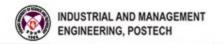


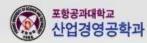
CT-based Joint CoR Estimation (2/2)

- Compared the fixed joint CoR estimation methods: PCA, Reuleaux, D-K, and Bone curvature
 - D-K (0.77±0.3) > Reuleaux (0.82±0.32) > PCA (0.92±0.30) > Bone curvature (0.95±0.41) in terms of the mean consistency and variability of the CoR



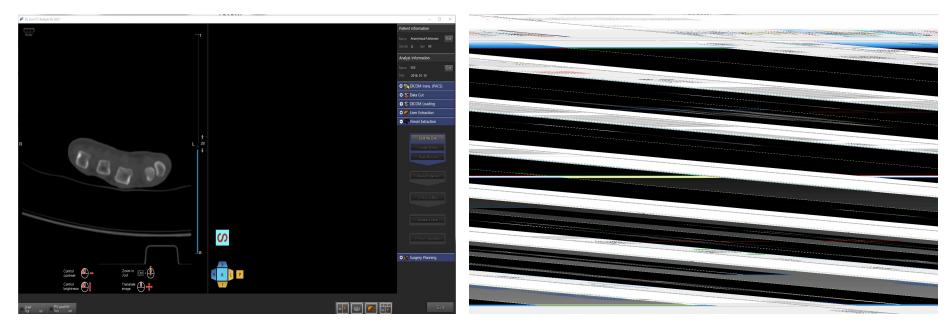
Limitation & Future Study


- Limitation
 - The experiment is costly and lack of practicability
 - The evaluation of techniques is not include the thumb
- Future study
 - Extend the evaluation to thumb
 - Use hand anthropometric information (or motion capture data) to estimate finger joint CoR for practical application

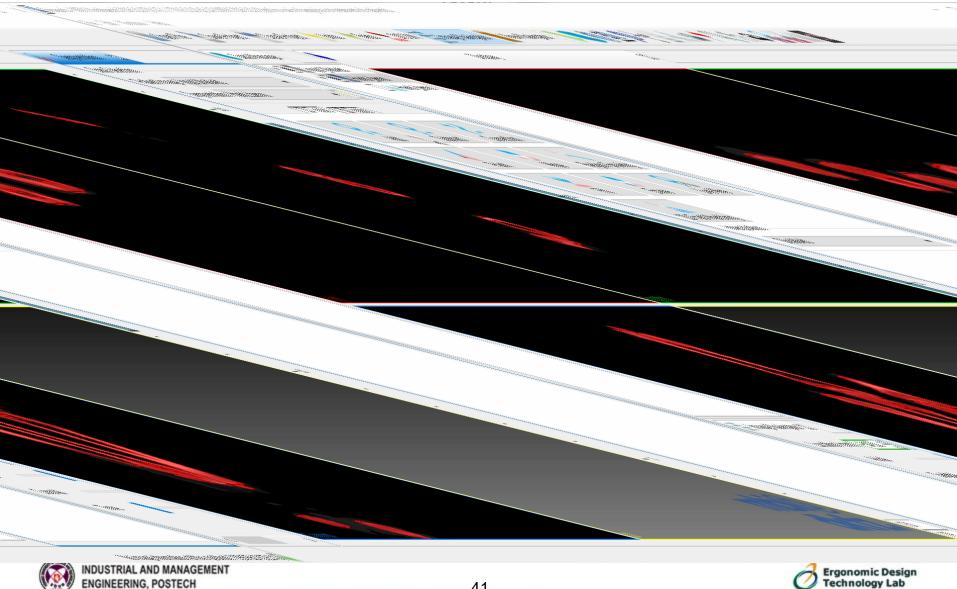


2 THANK YOU FOR YOUR **ATTENTION ANY QUESTIONS?**

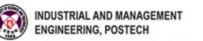
Appendices



Demo: Segmented Bone Model

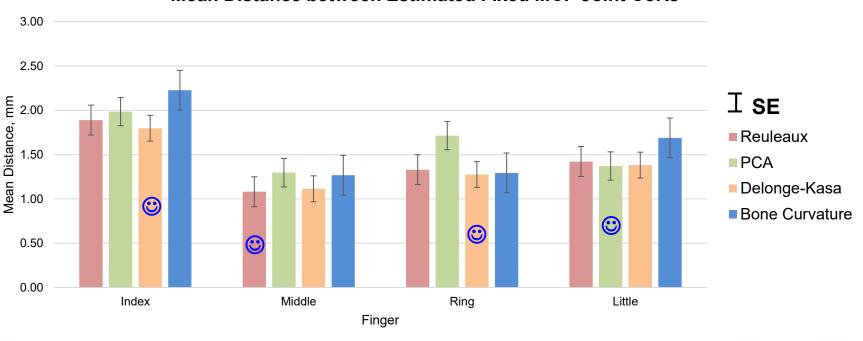

Step 1: Masking method

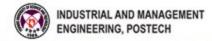
• Step 2: Threshold based method



Demo: Separation of Bone Segments

Demo: Registration of Each Bone Segments

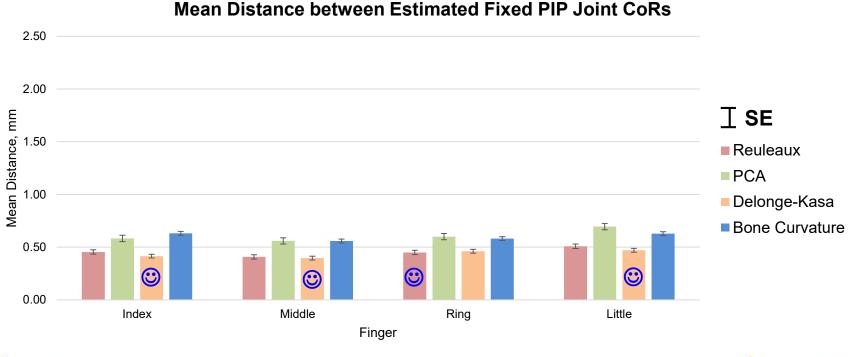


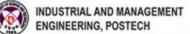


Consistency of Fixed CoR: MCP Joint

- Methods that provide the most consistent results
 - Index and ring: D-K (Index = 1.80±0.84; Ring = 1.28±0.49)
 - Middle: Reuleaux (1.08 ± 0.25)
 - Little: **PCA** (1.37 ± 0.45)

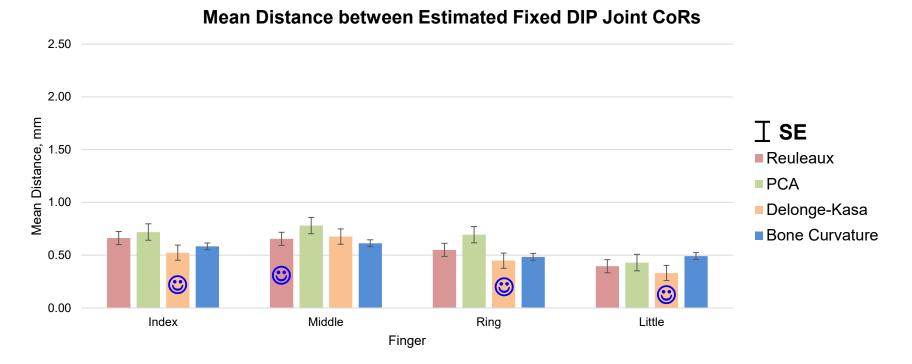

MCP joints

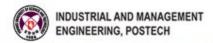

Consistency of Fixed CoR: PIP Joint


- Method that provides the most consistent results
 - Index, Middle, and Little finger : D-K

 $(Index = 0.41 \pm 0.20; Middle = 0.40 \pm 0.15; Little = 0.47 \pm 0.28)$

Ring finger : Reuleaux (0.45 ± 0.23)




Consistency of Fixed CoR: DIP Joint

- Method that provides the most consistent results
 - Index, Ring, and Little finger : D-K

 $(Index = 0.52 \pm 0.14; Ring = 0.45 \pm 0.23; Little = 0.33 \pm 0.11)$

Middle finger : Reuleaux (0.65 ± 0.21)

DIP joints