Development and Evaluation of a 25-DOF Hand Kinematic Model

Xiaopeng Yang, Jangwoon Park, Kihyo Jung, and Heecheon You, Ph.D.

Ergonomic Design Technology Lab Department of Industrial and Management Engineering Pohang University of Science and Technology

Agenda

Introduction

- ✓ Background
- ✓ Objectives

Hand Kinematic Model Development

- Hand Kinematic Model Evaluation
 - Methods
 - Results

Discussion

Background

- Importance of human hand: object manipulation (grasping, positioning, holding, etc.), communication (sign language, gestures), etc.
- Importance of virtual human hand: applications in 3D computer-aided ergonomic design, virtual surgery, computer games, etc.

Virtual surgery

Computer-aided ergonomic design (Left: Automobile; Right: Helicopter)

Hand model used for ergonomic design

- Hand model can adjust every hand segment length according to an arbitrary individual hand length, and the model is accurate
- Limitations of the existing commercial hand models, like the hand model in JackTM: Lacking accuracy, and ambiguous in defining the sizes of percentile models^{*}

*Nierop, 2007

Objectives

- Develop a hand kinematic model which is adjustable at each hand bone segment length according to the hand length
- 2. Evaluate the accuracy of the hand model with hand motion data collected by an optoelectronic motion capture system

Hand Kinematic Model

Hand kinematic model development process

Note: DOF: Degree of freedom BL: Bone length ROM: range of motion

Hand Anatomy

DOFs survey

lointo	Fingers				Wrist	Total	
JOINTS	Thumb	Index	Middle	Ring	Little	joint	Total
Carpometacarpal (CMC)	2[3*] (3)						
Metacarpophalangeal (MCP)	2[1**](2)	2	2	2	2		
Interphalangeal (IP)	1					2(3)	22(25)
Proximalinterphalangeal (PIP)		1	1	1	1		
Distalinterphalangeal (DIP)		1	1	1	1		

*Buchholz, 1989; **JackTM

- (): DOFs of the new model
- Features of the new model
 - ✓ Comprehensive DOFs (25 totally)

(DOFs of the new model)

Hand Anthropometry

Comparison study on ratio of the bone length to hand length

Source	Classification	Index			
Source		MCP	PIP	IP	DIP
Buchholz, 1992 ¹	Datia*UI	0.46*HL	0.25*HL	0.14*HL	0.10*HL
Greiner, 1991 ²		0.32*HL	0.26*HL	0.14*HL	0.12*HL
Buchholz, 1992 ¹	D ²	0.96	0.99	0.79	0.73
Greiner, 1991 ²	K-	0.43	0.25	0.34	0.18

¹Based on 2 female and 4 male hands ²Based on 59 male hands HL: Hand Length BL: Bone Length

Buchholz's data were adopted, later a study for measuring hand bone length would be conducted by another member using X-ray.

Forward Kinematics (Denavit-Hartenberg Method)

Decide fingertip position given hand posture (i.e., joint angles)

 $\mathbf{P} = f(\Theta)$

P: Fingertip Position Vector, Θ : Vector of Joint Angles

The 25-DOF Hand Model

Evaluation Process

Participants

□ Five male and right-handed participants

Classification	Moon (SD)	Range		
Classification	Mean (S.D.)	Minimum	Maximum	
Age	26.4 (2.1)	24	29	
Hand Length (cm)	19.2 (10.1)	17.8	20.6	
Hand Width (cm)	9.0 (5.1)	8.4	9.8	

Selection criteria

- ✓ Age: 20-30 years old
- ✓ Health conditions: No history of injuries at the hand or wrist

Apparatus

Optoelectronic motion capture system: 6 Eagle Digital Cameras[®] (Motion Analysis Corporation, CA, USA)

Spherical retro-reflective markers

A Layout of Motion Capture System

Marker Set

Cylinder Gripping

Participants were asked to grasp two different cylinders

Cylinder Gripping

Data Processing

Transform the captured 3D coordinates in order to be consistent with the 3D coordinate system of the hand model

Joint Angle Calculation: 1 DOF

Example of calculating PIP joint angle

Joint Angle Calculation: 2 DOF

Example of calculating MCP joint angles

Predicted Fingertip Position

Evaluation Criteria

□ Prediction Error: Distance between the measured fingertip position (X_M , Y_M , Z_M) and predicted fingertip position (X_P , Y_P , Z_P)

Error =
$$\sqrt{(X_P - X_M)^2 + (Y_P - Y_M)^2 + (Z_P - Z_M)^2}$$

Unit: mm

2	Participante	Classification	Index			
3	ranicipants		X	Y	Z	
4		Measured	-29	-78.2	102.5	
5	P1	Predicted	-2.9	-70.1	97.2	
6		Prediction error		97		

Evaluation Result for the Large Cylinder

The prediction error is from 10.6 mm to 20.9 mm. The model has less prediction error of fingertip position at longer finger.

Participants	Fingertip position prediction error (mm)				
	Index	Middle	Ring	Little	
P1	14.9	11.1	14.0	20.9	
P2	11.7	11.3	12.1	20.3	
P3	11.2	12.0	12.1	19.1	
P4	11.3	10.9	13.2	18.2	
P5	13.4	10.6	12.3	10.5	
Mean	12.5	11.2	12.7	17.8	
S.D.	1.6	0.5	0.8	4.2	
Grand mean	13.1				

Evaluation Result for the Small Cylinder

The prediction error is from 10.5 mm to 19.2 mm. The model has less prediction error of fingertip position at longer finger.

	Fingertip position prediction error (mm)				
Participants	Index	Middle	Ring	Little	
P1	16.9	16.9	17.7	19.2	
P2	11.3	11.2	11.3	19.0	
P3	13.7	18.4	12.5	13.1	
P4	12.6	11.7	12.3	19.0	
P5	12.9	10.5	11.3	13.3	
Mean	13.5	13.7	13.0	16.7	
SD	2.1	3.6	2.7	3.2	
Grand mean	14.2				

Discussion

- The new hand model has comprehensive degrees of freedom, especially at the CMC and MCP of the thumb and the wrist.
- □ The Model can predict each bone length of the hand according to an specific individual hand length.
- Sources of the prediction error
 - Regression of the bone length to the hand length (Small sample size)
 - ✓ Offset between captured coordinates data and bone data

Future Work

Big Picture of developing a novel inverse kinematic model which can predict natural hand postures

Q & A

Thank you!